JuiceFS 如何帮助趣头条超大规模 HDFS 降负载
作者简介
- 王振华,趣头条大数据总监,趣头条大数据负责人。
- 王海胜,趣头条大数据工程师,10 年互联网工作经验,曾在 eBay、唯品会等公司从事大数据开发相关工作,有丰富的大数据落地经验。
- 高昌健,Juicedata 解决方案架构师,十年互联网行业从业经历,曾在知乎、即刻、小红书多个团队担任架构师职位,专注于分布式系统、大数据、AI 领域的技术研究。
背景
趣头条大数据平台目前有一个近千节点的 HDFS 集群,承载着存储最近几个月热数据的功能,每日新增数据达到了百 TB 规模。日常的 ETL 和 ad-hoc 任务都会依赖这个 HDFS 集群,导致集群负载持续攀升。特别是 ad-hoc 任务,因为趣头条的业务模式需要频繁查询最新的数据,每天大量的 ad-hoc 查询请求进一步加重了 HDFS 集群的压力,也影响了 ad-hoc 查询的性能,长尾现象明显。集群负载高居不下,对很多业务组件的稳定性也造成了影响,如 Flink 任务 checkpoint 失败、Spark 任务 executor 丢失等。
因此需要一种方案使得 ad-hoc 查询尽量不依赖 HDFS 集群的数据,一方面可以降低 HDFS 集群的整体压力,保障日常 ETL 任务的稳定性,另一方面也能减少 ad-hoc 查询耗时的波动,优化长尾现象。
方案设计
趣头条的 ad-hoc 查询主要依靠 Presto 计算引擎,JuiceFS 的 Hadoop SDK 可以无缝集成到 Presto 中,无需改动任何代码,以不侵入业务的方式自动分析每一个查询,将需要频繁读取的数据自动从 HDFS 拷贝至 JuiceFS,后续的 ad-hoc 查询就可以直接获取 JuiceFS 上已有的缓存数据,避免对 HDFS 产生请求,从而降低 HDFS 集群压力。
另外由于 Presto 集群是部署在 Kubernetes 上,有弹性伸缩集群的需求,因此需要能够将缓存数据持久化。如果使用独立的 HDFS 或者某些缓存方案的话,成本会很高,此时 OSS 成为最理想的选择。
整体方案设计如下图所示。绿色部分表示 JuiceFS 的组件,主要包含两部分:JuiceFS 元数据服务(下图中的 JuiceFS Cluster)及 JuiceFS Hadoop SDK(下图与 Presto worker 关联的组件)。
JuiceFS 元数据服务用于管理文件系统中所有文件的元信息,如文件名、目录结构、文件大小、修改时间等。元数据服务是一个分布式集群,基于 Raft 一致性协议,保证元数据强一致性的同时,还能确保集群的可用性。
JuiceFS Hadoop SDK(以下简称 SDK)是一个客户端库,可以无缝集成到所有 Hadoop 生态组件中,这里的方案即是集成到 Presto worker 中。SDK 支持多种使用模式,既可以替代 HDFS 将 JuiceFS 作为大数据平台的底层存储,也可以作为 HDFS 的缓存系统。这个方案使用的便是后一种模式,SDK 支持在不改动 Hive Metastore 的前提下,将 HDFS 中的数据透明缓存到 JuiceFS 中,ad-hoc 查询的数据如果命中缓存将不再需要请求 HDFS。同时 SDK 还能保证 HDFS 与 JuiceFS 间数据的一致性,也就是说当 HDFS 中的数据发生变更时,JuiceFS 这边的缓存数据也能同步更新,不会对业务造成影响。这是通过比较 HDFS 与 JuiceFS 中文件的修改时间(mtime)来实现的,因为 JuiceFS 实现了完整的文件系统功能,所以文件具有 mtime 这个属性,通过比较 mtime 保证了缓存数据的一致性。
为了防止缓存占用过多空间,需要定期清理缓存数据,JuiceFS 支持根据文件的访问时间(atime)来清理 N 天前的数据,之所以选择用 atime 是为了确保那些经常被访问的数据不会被误删除。需要注意的是,很多文件系统为了保证性能都不会实时更新 atime,例如 HDFS 是通过设置 dfs.namenode.accesstime.precision
来控制更新 atime 的时间间隔,默认是最快 1 小时更新 1 次。缓存的建立也有一定的规则,会结合文件的 atime、mtime 和大小这些属性来决定是否缓存,避免缓存一些不必要的数据。
测试方案
为了验证以上方案的整体效果,包括但不限于稳定性、性能、HDFS 集群的负载等,我们将测试流程分为了多个阶段,每个阶段负责收集及验证不同的指标,不同阶段之间可能也会进行数据的横向比较。
测试结果
HDFS 集群负载
我们设计了两个阶段分别开启和关闭 JuiceFS 的功能。在开启阶段随机选取 10 台 HDFS DataNode,统计这一阶段每台 DataNode 平均每天的磁盘读 I/O 吞吐,平均值约为 3.5TB。在关闭阶段同样选择这 10 个节点,统计下来的平均值约为 4.8TB。因此使用 JuiceFS 以后可以降低 HDFS 集群约 26% 的负载,如下图所示。
从另一个维度也能反映 HDFS 集群负载降低的效果,在这两个阶段我们都统计了读取及写入 JuiceFS 的 I/O 总量。JuiceFS 的读 I/O 表示为 HDFS 集群降低的 I/O 量,如果没有使用 JuiceFS 那么这些请求将会直接查询 HDFS。JuiceFS 的写 I/O 表示从 HDFS 拷贝的数据量,这些请求会增大 HDFS 的压力。读 I/O 总量应该越大越好,而写 I/O 总量越小越好。下图展示了某几天的读写 I/O 总量,可以看到读 I/O 基本是写 I/O 的 10 倍以上,也就是说 JuiceFS 数据的命中率在 90% 以上,即超过 90% 的 ad-hoc 查询都不需要请求 HDFS。
平均查询耗时
在某一阶段将各 50% 流量的查询请求分配给未对接和已对接 JuiceFS 的两个集群,并分别统计平均查询耗时。从下图可以看到,使用 JuiceFS 以后平均查询耗时降低约 13%。
测试总结
JuiceFS 的方案在不改动业务配置的前提下,以对业务透明的方式大幅降低了 HDFS 集群的负载,超过 90% 的 Presto 查询不再需要请求 HDFS,同时还降低了 13% 的 Presto 平均查询耗时,超出最初设定的测试目标预期。之前长期存在的大数据组件不稳定的问题也得到解决。
值得注意的是,整个测试流程也很顺畅,JuiceFS 仅用数天就完成了测试环境的基础功能和性能验证,很快进入到生产环境灰度测试阶段。在生产环境中 JuiceFS 的运行也非常平稳,承受住了全量请求的压力,过程中遇到的一些问题都能很快得到修复。
未来展望
展望未来还有更多值得尝试和优化的地方:
- 进一步提升 JuiceFS 缓存数据的命中率,降低 HDFS 集群负载。
- 增大 Presto worker 本地缓存盘的空间,提升本地缓存的命中率,优化长尾问题。
- Spark 集群接入 JuiceFS,覆盖更多 ad-hoc 查询场景。
- 将 HDFS 平滑迁移至 JuiceFS,完全实现存储和计算分离,降低运维成本,提升资源利用率。
项目地址:
Github (https://github.com/juicedata/juicefs)如有帮助的话欢迎 star (0ᴗ0✿),鼓励鼓励我们哟!
JuiceFS 如何帮助趣头条超大规模 HDFS 降负载的更多相关文章
- 降本增效利器!趣头条Spark Remote Shuffle Service最佳实践
王振华,趣头条大数据总监,趣头条大数据负责人 曹佳清,趣头条大数据离线团队高级研发工程师,曾就职于饿了么大数据INF团队负责存储层和计算层组件研发,目前负责趣头条大数据计算层组件Spark的建设 范振 ...
- 趣头条基于 Flink 的实时平台建设实践
本文由趣头条实时平台负责人席建刚分享趣头条实时平台的建设,整理者叶里君.文章将从平台的架构.Flink 现状,Flink 应用以及未来计划四部分分享. 一.平台架构 1.Flink 应用时间线 首先是 ...
- python3+scrapy 趣头条爬虫实例
项目简介 爬取趣头条新闻(http://home.qutoutiao.net/pages/home.html),具体内容: 1.列表页(json):标题,简介.封面图.来源.发布时间 2.详情页(ht ...
- 从字节跳动离职后,拿到探探、趣头条、爱奇艺、小红书、15家公司的 offer【转】
前言 博主目前从事Android开发3年,前两年一直在抖音工作.我这篇文章并不是简单的描述一些面试中的题,或者总结一些Android的知识,而是想记录我整个的想法和准备的过程,以及一些心得体会,让大家 ...
- 百亿级小文件存储,JuiceFS 在自动驾驶行业的最佳实践
自动驾驶是最近几年的热门领域,专注于自动驾驶技术的创业公司.新造车企业.传统车厂都在这个领域投入了大量的资源,推动着 L4.L5 级别自动驾驶体验能尽早进入我们的日常生活. 自动驾驶技术实现的核心环节 ...
- 巧用符号链接迁移 HDFS 数据,业务完全无感知!
问题 JuiceFS 是一个基于对象存储的分布式文件系统,在之前跟对象存储比较的文章中已经介绍了 JuiceFS 能够保证数据的强一致性和极高的读写性能,因此完全可以用来替代 HDFS.但是数据平台整 ...
- 今日头条极速版邀请码以及其它APP邀请码大全
现在大多手机新闻APP都需要输入码,在网上找了很久,最终找到一个比较全的文章,本人试过,都是可以使用的! 第1个比较好,可边看新闻,边收益!嘻嘻!平时写代码累了,休息刷一下!或者在睡觉前刷新一下,每天 ...
- JuiceFS 在数据湖存储架构上的探索
大家好,我是来自 Juicedata 的高昌健,今天想跟大家分享的主题是<JuiceFS 在数据湖存储架构上的探索>,以下是今天分享的提纲: 首先我会简单的介绍一下大数据存储架构变迁以及它 ...
- Hadoop HDFS负载均衡
Hadoop HDFS负载均衡 转载请注明出处:http://www.cnblogs.com/BYRans/ Hadoop HDFS Hadoop 分布式文件系统(Hadoop Distributed ...
随机推荐
- Java的参数传递是值传递还是引用传递?
一.前言 首先先说结论,Java中方法参数传递方式是按值传递.如果参数是基本类型,传递的是基本类型的字面量值的拷贝.如果参数是引用类型,传递的是该参量所引用的对象在堆中地址值的拷贝. 接下来深入了解一 ...
- 痞子衡嵌入式:MCUXpresso IDE下将关键函数重定向到RAM中执行的几种方法
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是MCUXpresso IDE下将关键函数重定向到RAM中执行的几种方法. 前段时间痞子衡写了一篇 <在IAR开发环境下将关键函数重 ...
- [考试总结]noip模拟40
最近真的是爆炸啊... 到现在还是有不少没改出来.... 所以先写一下 \(T1\) 的题解.... 送花 我们移动右端点,之后我们用线段树维护全局最大值. 之后还要记录上次的位置和上上次的位置. 之 ...
- vivo营销自动化技术解密|开篇
一.营销自动化概览 1.1. 什么是营销自动化 营销自动化是指专门为营销部门或组织设计的软件平台和技术,可以更有效地在线进行多渠道营销并使重复性任务自动化.营销部门和销售人员通过制定任务和流程的操作标 ...
- 反射应用和获取Class对象的三种方式
一.写一个"框架",可以创建任何对象运行任何方法 1.配置文件 2.使用类加载器ClassLoader,Properties集合是可以和IO流结合使用完成读取和写入数据的集合,方法 ...
- DevExpress Silverlight DXChart特效总结
1. 主题修改 引用 xmlns:core=http://schemas.devexpress.com/winfx/2008/xaml/core 在Grid中添加core:ThemeManager ...
- 使用Eclipse的基本配置
因本人 IntelliJ IDEA 正版授权前些日子已到期,最近开始使用 Eclipse .体验开发了一阵子,觉得除了在界面美观与前端编辑的操作上 Eclipse 与 IDEA 差距还比较大以外,其他 ...
- 【Azure API 管理】APIM 配置Validate-JWT策略,验证RS256非对称(公钥/私钥)加密的Token
问题描述 在APIM中配置对传入的Token进行预验证,确保传入后端被保护的API的Authorization信息正确有效,可以使用validate-jwt策略.validate-jwt 策略强制要求 ...
- Math.round真的是四舍五入吗?我不这么认为
public static long round(double a) 返回最接近参数的 long.结果将舍入为整数:加上 1/2,对结果调用 floor 并将所得结果强制转换为 long 类型.换句话 ...
- webpack learn1-初始化项目1
使用Visual Studio Code软件使用准备,先安装一些插件,加快开发效率(还有Language Packs 选择简体中文安装后重启软件,可切换为中文): 下面是项目初始化步骤: 1 软件打 ...