题面传送门

原题题号:Codeforces 883D

题意:

有 \(n\) 个位置,每个位置上要么有一条狗,要么有一根骨头,要么啥都没有。

现在你要给每个狗指定一个方向(朝左或朝右)。

朝左的狗可以到达它左边的所有位置,朝右的狗可以到达它右边的所有位置。它们的速度均为 \(1\) 格\(/s\)

如果一个格子上有骨头,那么最先到达这个格子上的狗可以吃掉这个骨头。

求最多能吃掉多少个骨头,以及最少需要多长时间才能达到这个局面。

\(n \in [1,10^5]\)

显然,如果只有 \(1\) 只狗,那么就暴力枚举它朝左还是朝右,然后取个 \(\max\) 即可。

如果有 \(2\) 只狗及以上,那么所有骨头都能被吃掉。

难点在于第二问。考虑二分答案 \(x\),需检查在 \(x\) 秒内这些狗能否吃掉所有骨头。

假设第 \(i\) 只狗的位置为 \(p_i\),那么这只狗要么吃掉 \([p_i-x,p_i]\) 之间的骨头,要么吃掉 \([p_i,p_i+x]\) 之间的骨头。

考虑 \(dp\)。\(dp_i=j\) 表示按位置从小到大排序,第 \(1\) 到第 \(i\) 只狗最多能吃掉前 \(j\) 个位置上的所有骨头。

你再预处理 \(s_i\),\(s_i\) 表示位置 \(1\) 到 \(i\) 总共多少个骨头。

分三种情况:

  1. 第 \(i\) 只狗向左走,也就是 \([p_i-x,p_i]\) 中有骨头没有被吃掉。这种情况满足的条件是前 \(i-1\) 只狗能够吃完 \([1,p_i-x-1)\) 中的所有骨头,也就是 \(dp_{i-1} \geq p_i-x\) 或 \(s_{p_i-x-1}=s_{dp_{i-1}}\),i.e. \((dp_{i-1},p_i-x-1)\) 中没有骨头,并更新 \(dp_i=\max(dp_i,p_i)\)。
  2. 第 \(i\) 只狗向右走。这种情况的满足条件是 \([1,p_i)\) 中所有骨头都被前 \(i-1\) 条狗吃掉。也就是 \(dp_{i-1} \geq p_i\) 或 \(s_{p_i-1}=s_{dp_{i-1}}\),并更新 \(dp_i=\max(dp_i,p_i+x)\)。
  3. 第 \(i\) 只狗向左走,第 \(i-1\) 只狗向右走。这种情况的满足条件是 \([p_{i-1},p_{i-1}+x]\cup[p_i-x,p_i]\) 可以包含 \([p_{i-1},p_i]\) 中所有骨头,并且 \(dp_{i-2} \geq p_{i-1}\) 或 \(s_{p_{i-1}-1}=s_{dp_{i-2}}\),并更新 \(dp_i=\max(dp_i,\max(p_i,p_{i-1}+x))\)

    为什么这三种情况能涵盖所有情况呢?

    考虑一只向右走的狗。显然它前面所有骨头都被吃掉了,要么是被它左边的狗吃掉了(情况 2),要么是被它右边的狗吃掉了(情况 3)。

    再考虑一只向左走的狗,根据上面的推论 \([1,p_i-x)\) 所有骨头都被吃掉了。而这些骨头只能被它左边的狗吃掉,所以只有 1 种情况,也就是情况 1。
/*
Contest: -
Problem: NFLSOJ 712
Author: tzc_wk
Time: 2020.10.20
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
typedef pair<int,int> pii;
typedef long long ll;
int n;char s[1000005];
int posd[1000005],cntd=0;
int posb[1000005],cntb=0;
int dp[1000005];
int hav[1000005];
inline bool check(int mid){
memset(dp,0,sizeof(dp));
for(int i=1;i<=cntd;i++){
if(dp[i-1]>=posd[i]||hav[posd[i]-1]==hav[dp[i-1]]) dp[i]=max(dp[i],posd[i]+mid);
if(dp[i-1]>=posd[i]-mid||hav[posd[i]-mid-1]==hav[dp[i-1]]) dp[i]=max(dp[i],posd[i]);
else return 0;
if(i>=2&&(posd[i-1]+mid>=posd[i]-mid||hav[posd[i-1]+mid]==hav[posd[i]-mid-1])&&(dp[i-2]>=min(posd[i-1],posd[i]-mid)||hav[dp[i-2]]==hav[min(posd[i-1],posd[i]-mid)-1]))
dp[i]=max(dp[i],max(posd[i],posd[i-1]+mid));
dp[i]=min(dp[i],n);
// printf("%d %d\n",i,dp[i]);
}
if(hav[dp[cntd]]==hav[n]) return 1;
return 0;
}
int main(){
scanf("%d%s",&n,s+1);
for(int i=1;i<=n;i++) if(s[i]=='D') posd[++cntd]=i;
for(int i=1;i<=n;i++) if(s[i]=='B') posb[++cntb]=i;
posb[cntb+1]=n+1;
for(int i=0;i<=cntb;i++){
for(int j=posb[i];j<posb[i+1];j++) hav[j]=i;
}
if(cntd==1){
int cntl=0,cntr=0,mxl=0,mxr=0;
for(int i=1;i<=posd[1];i++) if(s[i]=='B') cntl++,mxl=max(mxl,posd[1]-i);
for(int i=posd[1];i<=n;i++) if(s[i]=='B') cntr++,mxr=max(mxr,i-posd[1]);
if(cntl>cntr) printf("%d %d\n",cntl,mxl);
else if(cntr>cntl) printf("%d %d\n",cntr,mxr);
else printf("%d %d\n",cntl,min(mxl,mxr));
return 0;
}
// check(4);
int l=1,r=n,ans=-23987;
while(l<=r){
int mid=(l+r)>>1;
if(check(mid)) ans=mid,r=mid-1;
else l=mid+1;
}
printf("%d %d\n",cntb,ans);
return 0;
}

【2020五校联考NOIP #8】狗的更多相关文章

  1. 【2020五校联考NOIP #6】三格缩进

    题意: 给出 \(n\) 个数 \(a_1,a_2,\dots,a_n\),你要进行 \(m\) 次操作,每次操作有两种类型: \(1\ p\ x\):将 \(a_p\) 改为 \(x\). \(2\ ...

  2. 【2020五校联考NOIP #8】自闭

    题目传送门 题意: 有一个 \(n \times m\) 的矩阵,里面已经填好了 \(k\) 个非负整数. 问是否能在其它 \(n \times m-k\) 个格子里各填上一个非负整数,使得得到的矩阵 ...

  3. 【2020五校联考NOIP #7】道路扩建

    题面传送门 题意: 给出一张 \(n\) 个点 \(m\) 条边的无向图 \(G\),第 \(i\) 条边连接 \(u_i,v_i\) 两个点,权值为 \(w_i\). 你可以进行以下操作一次: 选择 ...

  4. 【2020五校联考NOIP #4】今天的你依旧闪耀

    题面传送门 题意: 对于一个长度为 \(n\)(\(n\) 为偶数)的排列 \(p\),定义一次"变换"后得到的排列 \(p'\) 为: \(p'_i=\begin{cases}p ...

  5. 【2020五校联考NOIP #3】序列

    题面传送门 原题题号:Codeforces Gym 101821B 题意: 给出一个排列 \(p\),要你找出一个最长上升子序列(LIS)和一个最长下降子序列(LDS),满足它们没有公共元素.或告知无 ...

  6. 【2020五校联考NOIP #7】伟大的卫国战争

    题面传送门 题意: 数轴上有 \(n\) 个点,现在要在它们之间连 \(m\) 条边,第 \(i\) 条边连接 \(a_i,b_i\) 两个点. 现在你要钦定每条边连在数轴的上方还是下方,使得任意两条 ...

  7. 【2020五校联考NOIP #6】最佳观影

    题意: 给出一个 \(k \times k\) 的网格和 \(n\) 次操作.其中 \(k\) 为奇数. 每次操作给出一个数 \(m\).每次你要找出一个三元组 \((x,l,r)\) 使得: \(r ...

  8. 【2020五校联考NOIP #2】矩阵

    咕咕咕到现在~ 题面传送门 题意: 给出一个 \(n\times n\) 的矩阵 \(A\).要你求有多少个 \(n\times n\) 的矩阵 \(B\) 满足: 每一行都是 \(1\) 到 \(n ...

  9. 【五校联考1day2】JZOJ2020年8月12日提高组T2 我想大声告诉你

    [五校联考1day2]JZOJ2020年8月12日提高组T2 我想大声告诉你 题目 Description 因为小Y 是知名的白富美,所以自然也有很多的追求者,这一天这些追求者打算进行一次游戏来踢出一 ...

随机推荐

  1. Linux服务器装Anaconda&TensorFlow

    远程Linux服务器装Anaconda&指定版本TensorFlow 说明: 由于疫情影响,原先使用的服务器已断电,故重选了一台服务器对环境重选进行搭建,正好补上这篇博文. 01 下载Anac ...

  2. Java编程开发学习路线图(附所有免费课程+在线自测)

    转自  https://yq.aliyun.com/articles/134286?spm=5176.100239.0.0.1UfveS 摘要: 长期以来,Java一直占据TIOBE编程语言排行版第一 ...

  3. 好好编程BUAA_SE(组/团队) Scrum Meeting 博客汇总

    好好编程BUAA_SE(组/团队) Scrum Meeting 博客汇总 一.Scrum Meeting 1. Alpha Alpha阶段 第一次Scrum Meeting Alpha阶段 第二次Sc ...

  4. elasticsearch使用ik中文分词器

    elasticsearch使用ik中文分词器 一.背景 二.安装 ik 分词器 1.从 github 上找到和本次 es 版本匹配上的 分词器 2.使用 es 自带的插件管理 elasticsearc ...

  5. CF #749

    A 题意 有个长度为n的序列, 每个数互不相同, 求总和最大的最长子序列, 并输出每个i: 题解 emmmmmm, 刚开始看到这个数据和题解被迷惑了, 以为有什么顺序, 并且一直在想一些复杂度较高的算 ...

  6. JAVA笔记7__接口应用/Object类/简单工厂模式/静态代理模式/适配器模式

    /** * 接口应用 */ public class Main { public static void main(String[] args) { Person p = new Person(&qu ...

  7. cf Make It Nondeterministic (简单贪心)

    有N个人.每个人都有两个名字. 给出这N个人的一个排列.p[1]...p[N]. 现在让每个人挑自己丙个名字中的一个名字.问是否存在一种方案,使得挑出来的N个名字按字典序排完以后正好是p[1]...p ...

  8. Python技法4:闭包

    闭包:用函数代替类 有时我们会定义只有一个方法(除了__init__()之外)的类,而这种类可以通过使用闭包(closure)来替代.闭包是被外层函数包围的内层函数,它能够获取外层函数范围中的变量(即 ...

  9. 应对gitee容量超限. 保留star/fork/评论

    应对gitee容量超限 进入企业版,"管理"-"仓库管理",点"清空仓库". 在E:\gitee目录上右击,"git bash h ...

  10. spark搭建

    1.上传解压,配置环境变量 配置bin目录 2.修改配置文件 conf cp spark-env.sh.template spark-env.sh 增加配置 export SPARK_MASTER_I ...