第三波,走起~~

FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ

FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ

单位根反演

今天打多校时 1002 被卡科技了……赛场上看出来是个单位根反演但不会,所以只好现学这东西了(

首先你得知道单位根是什么东西,对于 \(n\) 次方程 \(x^n-1=0(x\in\mathbb{C})\),在复数域上有 \(n\) 个根,其对应到复平面上就是单位圆的 \(n\) 等分点,我们将这些单位根从 \(x\) 轴正半轴开始顺时针依次标号 \(0,1,2,\cdots,n-1\),记作 \(\omega_n^0,\omega_n^1,\omega_n^2,\cdots,\omega_n^{n-1}\),显然单位根满足以下性质:

  • \(\omega_n^x=\cos\dfrac{2\pi x}{n}+\sin\dfrac{2\pi x}{n}\text{i}\)
  • \((\omega_n^x)^n=1\)
  • \(\omega_n^x=(\omega_n^1)^x\)

相信学过 FFT 的同学都不难理解。

单位根反演说的大概是这样一件事,对于任意整数 \(n\) 和 \(x\),有 \([n\mid x]=\dfrac{1}{n}\sum\limits_{i=0}^{n-1}(\omega_n^{x})^i\)。也就是说如果 \(x\) 是 \(n\) 的倍数那么 \(\dfrac{1}{n}\sum\limits_{i=0}^{n-1}(\omega_n^{x})^i=1\),否则 \(\dfrac{1}{n}\sum\limits_{i=0}^{n-1}(\omega_n^{x})^i=0\)。

证明:

  • 如果 \(n\mid x\),那么显然 \(\omega_n^x=1\),\(\sum\limits_{i=0}^{n-1}(\omega_n^x)^i=n\)
  • 如果 \(n\nmid x\),那么根据等比数列求和公式 \(\sum\limits_{i=0}^{n-1}(\omega_n^{x})^i=\dfrac{(\omega_n^x)^n-1}{\omega_n^x-1}\),显然分子等于 \(0\),而由于 \(n\nmid x\),\(\omega_n^x-1\ne 0\),因此分式值为 \(0\)。

那么什么样的题能用单位根反演呢?首先如果题目给你一个带组合数的式子,这个组合数中带有取模符号 \(\bmod\),而往往这个组合数上底数非常大(高达 \(10^9\) 甚至 \(10^{18}\)),而下底数中含枚举变量,那么此时这道题大概率就是单位根反演,运用二项式定理将组合数转化为幂的形式求解。注意,这里的 \(\bmod y\) 后面的 \(y\) 应当在输入中确定了,如果 \(y\) 作为枚举变量则无法二项式定理,还有一般单位根反演的题都涉及到取模,如果 \(y\nmid MOD-1\) 那么也无法二项式反演,因为我们要通过 \(g^{(MOD-1)/y}\) 求出 \(\omega_y^1\bmod MOD\)(譬如前天晚上的 D1C 如果模数 \(=10^9+9\) 就可以单位根反演了?)

说了这么多,还是具体题目具体分析吧。

60. LOJ #6485. LJJ 学二项式定理

首先这题组合数的 \(n\) 非常大,直接算的话第一步就爆了,因此我们需要想着用二项式定理将这里的 \(n\) 放到指数上去,怎么办呢?注意到这里涉及到 \(\bmod 4\),而刚好有 \(4\mid 998244352\),因此可以考虑单位根反演,上来推一波式子:

\[\begin{aligned}
ans&=\sum\limits_{i=0}^n\dbinom{n}{i}s^i\sum\limits_{j=0}^3a_j[j\equiv i\pmod 4]\\
&=\sum\limits_{j=0}^3a_j\sum\limits_{i=0}^n\dbinom{n}{i}s^i[4\mid(i-j)]\\
&=\sum\limits_{j=0}^3a_j\sum\limits_{i=0}^n\dbinom{n}{i}s^i\sum\limits_{k=0}^3\omega_4^{(i-j)k}·\dfrac{1}{4}\\
&=\dfrac{1}{4}\sum\limits_{j=0}^3a_j\sum\limits_{k=0}^3\dfrac{1}{\omega_4^{jk}}\sum\limits_{i=0}^n\dbinom{n}{i}s^i\omega_4^{ik}\\
&=\dfrac{1}{4}\sum\limits_{j=0}^3a_j\sum\limits_{k=0}^3\dfrac{1}{\omega_4^{jk}}(s\omega_4^k+1)^n
\end{aligned}
\]

然后直接计算就行了,众所周知 \(998244353\) 的一个原根 \(g=3\),那么我们可以通过 \(g^{998244352/4}\) 求出 \(\omega_4^1\)

const int MOD=998244353;
const int INV4=(3ll*MOD+1)>>2;
int w[4];
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
ll n;int s,a[4];
void solve(){
int res=0;scanf("%lld%d%d%d%d%d",&n,&s,&a[0],&a[1],&a[2],&a[3]);n%=(MOD-1);
for(int i=0;i<4;i++) for(int j=0;j<4;j++)
res=(res+1ll*a[i]*w[(16-j*i)&3]%MOD*qpow((1ll*w[j]*s+1)%MOD,n))%MOD;
printf("%d\n",1ll*res*INV4%MOD);
}
int main(){
w[0]=1;w[1]=qpow(3,MOD-1>>2);w[2]=1ll*w[1]*w[1]%MOD;
w[3]=1ll*w[1]*w[1]%MOD*w[1]%MOD;
int qu;scanf("%d",&qu);while(qu--) solve();
return 0;
}

61. P5591 小猪佩奇学数学

还是注意到此题 \(n\) 很大,而 \(k\) 是 \(2\) 的整数次幂,众所周知 \(998244353-1=119·2^{23}\) 刚好是 \(k\) 的倍数,因此题目已经疯狂暗示了此题的算法,然后就考虑一阵推式子:

\[\begin{aligned}
ans&=\sum\limits_{i=0}^n\dbinom{n}{i}p^i·\dfrac{i-i\bmod k}{k}\\
&=\dfrac{1}{k}\sum\limits_{i=0}^n\dbinom{n}{i}p^i·i-\dfrac{1}{k}\sum\limits_{i=0}^n\dbinom{n}{i}p^i·i\bmod k\\
&=\dfrac{1}{k}\sum\limits_{i=0}^n\dbinom{n-1}{i-1}p^i·n-\dfrac{1}{k}\sum\limits_{i=0}^n\dbinom{n}{i}p^i·\sum\limits_{r=0}^{k-1}r[k\mid i-r]\\
&=\dfrac{np}{k}\sum\limits_{i=0}^n\dbinom{n-1}{i-1}p^{i-1}-\dfrac{1}{k^2}\sum\limits_{i=0}^n\dbinom{n}{i}p^i·\sum\limits_{r=0}^{k-1}r\sum\limits_{j=0}^{k-1}\omega_k^{j(i-r)}\\
&=\dfrac{np}{k}(p+1)^{n-1}-\dfrac{1}{k^2}\sum\limits_{i=0}^n\dbinom{n}{i}p^i·\sum\limits_{r=0}^{k-1}r\sum\limits_{j=0}^{k-1}\omega_k^{j(i-r)}\\
&=\dfrac{np}{k}(p+1)^{n-1}-\dfrac{1}{k^2}\sum\limits_{j=0}^{k-1}(\sum\limits_{r=0}^{k-1}r·\omega_k^{-jr})·(\sum\limits_{i=0}^n\dbinom{n}{i}p^i\omega_k^{ji})\\
&=\dfrac{np}{k}(p+1)^{n-1}-\dfrac{1}{k^2}\sum\limits_{j=0}^{k-1}(\sum\limits_{r=0}^{k-1}r·\omega_k^{-jr})·(p^i\omega_k^{i}+1)^n
\end{aligned}
\]

式子推到这里,聪明的读者们不难发现我们复杂度瓶颈在于如何计算 \(\sum\limits_{r=0}^{k-1}r·\omega_k^{-jr}\),显然这东西可以被抽象为 \(\sum\limits_{i=0}^{n-1}i·a^i\),因此接下来我们考虑如何高效求出这个式子的值(其实《具体数学》上有这方面的推导内容,大概在 P27),我们设 \(S=\sum\limits_{i=0}^{n}ia^i\),那么 \(aS=\sum\limits_{i=0}^{n}ia^{i+1}=\sum\limits_{i=1}^{n+1}(i-1)a^i\),两式相减可以得到 \((a-1)S=(n+1)a^{n+1}-\sum\limits_{i=1}^{n+1}a^i\),然后一个等比数列求和公式带走即可,注意特判 \(a=1\)。

复杂度 \(k\log k\)。

62. UOJ #450. 【集训队作业2018】复读机

首先当 \(d=1\) 时答案显然是 \(m^n\)

当 \(k=2\) 时每个复读机的 EGF 显然是 \(\sum\limits_{2\mid i}\dfrac{x^i}{i!}=\cosh x=\dfrac{e^x+e^{-x}}{2}\),因此答案即为 \(n![x^n](\dfrac{e^x+e^{-x}}{2})^k\),二项式定理一通暴算即可,复杂度 \(\mathcal O(k)\)。

当 \(k=3\) 时类似地有每个复读机的 EGF 为 \(\sum\limits_{3\mid i}\dfrac{x^i}{i!}=\sum\limits_{i}\dfrac{x^i}{i!}[3\mid i]=\dfrac{1}{3}\sum\limits_{j=0}^2\sum\limits_{i}\dfrac{x^i·\omega_3^{ij}}{i!}\),化简一下可以得到 \(\dfrac{1}{3}(\sum\limits_{j=0}^2e^{\omega_3^jx})\),然后三项式定理(大雾)枚举一下即可,复杂度 \(\mathcal O(k^2)\)

63. HDU 7013 String Mod

好了,既然你已经学会了这么多,就来试一下昨天的多校 1002 吧(

首先对于一对 \((i,j)\),答案显然可以写成 \(\sum\limits_{p}\sum\limits_{q}\dbinom{L}{p,q,L-p-q}·(k-2)^{L-p-q}[p\equiv i\pmod{n}][q\equiv j\pmod{n}]\),看到 \(\bmod\) 以及 \(n\mid P-1\),可以考虑单位根反演,即

\[\begin{aligned}
ans&=\sum\limits_{p}\sum\limits_{q}\dbinom{L}{p,q,L-p-q}·(k-2)^{L-p-q}[p\equiv i\pmod{n}][q\equiv j\pmod{n}]\\
&=\dfrac{1}{n^2}\sum\limits_{p}\sum\limits_{q}\dbinom{L}{p,q,L-p-q}·(k-2)^{L-p-q}\sum\limits_{x=0}^{n-1}\sum\limits_{y=0}^{n-1}\omega_n^{(p-i)x}\omega_n^{(q-j)y}\\
&=\dfrac{1}{n^2}\sum\limits_{x=0}^{n-1}\sum\limits_{y=0}^{n-1}\dfrac{1}{\omega^{ix}}\dfrac{1}{\omega^{jy}}\sum\limits_{p}\sum\limits_{q}\dbinom{L}{p,q,L-p-q}·(k-2)^{L-p-q}(\omega_n^{x})^p(\omega_n^{y})^q\\
&=\dfrac{1}{n^2}\sum\limits_{x=0}^{n-1}\sum\limits_{y=0}^{n-1}\dfrac{1}{\omega^{ix}}\dfrac{1}{\omega^{jy}}(\omega_n^x+\omega_n^y+k-2)^L
\end{aligned}
\]

直接算是 \(n^2\) 的,再加上前面 \(i,j\) 的复杂度,总复杂度 \(n^4\),不过发现这个式子中每一项要么与 \(i,x\) 有关,要么与 \(j,y\) 有关,要么与 \(x,y\) 有关,并没有哪一项与 \(i,j\) 直接相关,因此考虑矩阵乘法,我们记矩阵 \(A_{i,j}=\dfrac{1}{\omega_n^{ij}}\),矩阵 \(B_{i,j}=(\omega_n^i+\omega_n^j+k-2)^L\),那么答案矩阵即为 \(A\times B\times A\) 乘 \(\dfrac{1}{n^2}\)。

总复杂度 \(\mathcal O(n^3)\)​

FFT 三次变两次的小技巧

一个非常 trivial 的小 trick。8 个月前学 FFT 时没学懂现在来补了。

首先注意到 \(\text{DFT}\) 是一个线性变换,因此对于两个序列 \(a,b\),记 \(va\) 为 \(a\) 每一项都乘以 \(v\) 后的结果,那么有 \(\text{DFT}(a+b\sqrt{-1})=\text{DFT}(a)+\text{DFT}(b)\sqrt{-1}\),也就是说,假设 \(P=\text{DFT}(a),Q=\text{DFT}(b)\),那么 \(\text{DFT}(a+b\sqrt{-1})=P+\sqrt{-1}Q\)。

这样还是无法确定出 \(P,Q\)​​,不过注意到有个东西叫共轭复数,具体来说,对于 \(z=a+b\sqrt{-1}\)​​,其共轭复数 \(\overline{z}=a-b\sqrt{-1}\)​​,因此对于一个序列 \(a\)​​,我们考虑定义其共轭序列(瞎起名字 ing)\(\overline{a}\)​​ 满足 \(\overline{a}_i=\overline{a_i}\)​​,那么 \(\text{DFT}(\overline{a+b\sqrt{-1}})=\text{DFT}(a-b\sqrt{-1})=P-\sqrt{-1}Q\)​​,因此如果我们能高效求出 \(\text{DFT}(\overline{a+b\sqrt{-1}})\)​,即 \(\text{DFT}(a-b\sqrt{-1})\)​,那么对于每一项 \(i\)​,如果我们设 \(X=\text{DFT}(a+b\sqrt{-1})_i,Y=\text{DFT}(a-b\sqrt{-1})_i\)​,有 \(P_i+\sqrt{-1}Q_i=X,P_i-\sqrt{-1}Q_i=Y\)​​​,简单二元一次方程组即可求出 \(P_i,Q_i\)​​。具体来说,假设 \(x_1=P_i\) 的实部,\(y_1=P_i\) 的虚部,\(x_2,y_2\) 也同理,那么:

\[\begin{cases}
x_1-y_2=\text{Re}(X)\\
y_1+x_2=\text{Im}(X)\\
x_1+y_2=\text{Re}(Y)\\
y_1-x_2=\text{Im}(Y)
\end{cases}
\]

解得

\[\begin{cases}
x_1=\dfrac{\text{Re}(X)+\text{Re}(Y)}{2}\\
y_1=\dfrac{\text{Im}(X)+\text{Im}(Y)}{2}\\
x_2=\dfrac{\text{Im}(X)-\text{Im}(Y)}{2}\\
y_2=\dfrac{\text{Re}(Y)-\text{Re}(Y)}{2}\\
\end{cases}
\]

那么怎么求出 \(\text{DFT}(\overline{a+b\sqrt{-1}})\)​ 呢?注意到 DFT 的过程实际上是将每个 \(a_i\)​ 变为 \(f(\omega_n^i)\)​​​​,因此 \(\text{DFT}(\overline{a})_i=\sum\limits_{j=0}^n\overline{a}_j(\omega_n^i)^j\)​,又有:

  • \(\overline{ab}=\overline{a}·\overline{b}\)
  • \(\overline{\omega_{n}^i}=\omega_n^{n-i}\)

因此 \(\text{DFT}(\overline{a})_i=\sum\limits_{j=0}^n\overline{a}_j\overline{(\omega_n^{n-i})^j}=\overline{\sum\limits_{j=0}^na_j(\omega_n^{n-i})^j}\),不难发现对于 \(i=0\) 而言,由于 \(\omega_{n}^n=1\),后面那东西就是 \(\overline{\text{DFT}(a)_0}\),而对于 \(i\ne 0\),后面那东西就是 \(\overline{\text{DFT}(a)_{n-i}}\),因此我们求出 \(\text{DFT}(a+b\sqrt{-1})\) 后,把这个序列第 \(1\) 项至第 \(n-1\) 项 reverse 一下并把每一项的虚部变为其相反数即可得到 \(\text{DFT}(\overline{a+b\sqrt{-1}})\)​。这样即可一次 DFT+一次 IDFT 实现 FFT(

const int MAXP=1<<21;
const double Pi=acos(-1);
int n,m,LEN=1;
struct comp{
double x,y;
comp(double _x=0,double _y=0):x(_x),y(_y){}
comp operator +(const comp &rhs){return comp(x+rhs.x,y+rhs.y);}
comp operator -(const comp &rhs){return comp(x-rhs.x,y-rhs.y);}
comp operator *(const comp &rhs){return comp(x*rhs.x-y*rhs.y,x*rhs.y+y*rhs.x);}
comp operator /(const double &rhs){return comp(x/rhs,y/rhs);}
} a[MAXP+5],b[MAXP+5];
int rev[MAXP+5];
void FFT(comp *a,int len,int type){
int lg=31-__builtin_clz(len);
for(int i=0;i<len;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<lg-1);
for(int i=0;i<len;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int i=2;i<=len;i<<=1){
comp W=comp(cos(2*Pi/i),type*sin(2*Pi/i));
for(int j=0;j<len;j+=i){
comp w=comp(1,0);
for(int k=0;k<(i>>1);k++,w=w*W){
comp X=a[j+k],Y=w*a[(i>>1)+j+k];
a[j+k]=X+Y;a[(i>>1)+j+k]=X-Y;
}
}
} if(!~type) for(int i=0;i<len;i++) a[i].x=(int)(a[i].x/len+0.5);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++) scanf("%lf",&a[i].x);
for(int i=0;i<=m;i++) scanf("%lf",&a[i].y);
while(LEN<=n+m) LEN<<=1;FFT(a,LEN,1);
for(int i=0;i<LEN;i++){
comp x=a[i],y=(!i)?a[i]:a[LEN-i];y.y=-y.y;
comp A=(x+y)/2.0,B=(x-y)/2.0;swap(B.x,B.y);B.y=-B.y;
b[i]=A*B;
} FFT(b,LEN,-1);
for(int i=0;i<=n+m;i++) printf("%d%c",(int)b[i].x," \n"[i==n+m]);
return 0;
}

各种多项式的 \(n^2\) 版本

qwq 大概是为了为下面子集卷积的高级操作做铺垫(?)

博客戳这儿

子集卷积的一些高级操作

首先在开始正题之前我们先得知道什么是集合幂级数,集合幂级数大概就是一个形如 \(f(x)=\sum\limits_{S\subseteq U}a_Sx^S\) 的幂级数 \(f\),其中 \(U\) 是一个给定的有限集合。与形式幂级数不同的是,\(x^S\) 上方的指数在这种定义下全部是全集 \(U\) 的一个个子集 instead of 一个个非负整数(当然,在 OI 中,由于用二进制表示集合这种方法的存在,我们也可以将 \(x\) 上方的指数视作一个个在 \([0,2^{|U|})\) 中的二进制数,这样全集可视为 \(2^{|U|}-1\))。与形式幂级数的加法卷积类似,我们也可以定义 or 卷积、and 卷积、xor 卷积等,分别表示两个集合幂级数 \(F,G\) 相乘,\([x^S]F(x)\times[x^T]G(x)\) 的系数贡献到 \(x^{S\cup T},x^{S\cap T},x^{S\oplus T}\) 的情况,对于这些卷积你都可以在我的快速沃尔什变换&快速莫比乌斯变换小记中找到,当然由于这里我们将着重探讨子集卷积,所以对于其他的卷积咱也大可不必花心思赘述了(

子集卷积,大概也是 \([x^S]F(x)\times[x^T]G(x)\)​ 的系数贡献到 \(x^{S\cup T}\)​ 的情况,不过有一个前提就是 \(S\cap T=\varnothing\)​ 时才能产生贡献,否则贡献为 \(0\)​。那么怎么快速求出两个集合幂级数 \(F,G\)​ 的子集卷积呢?注意到关于集合的并,有一个性质 \(|S|+|T|\ge|S\cup T|\)​,因此我们考虑将集合幂级数写成一个二元函数的形式(形式而已,并不是真正在集合幂级数后面加一维),即将每个 \(a_Sx^S\)​ 扩展成 \(a_Sx^Sy^{|S|}\)​​ 的形式,这样每个集合幂级数可以写作 \(\sum\limits_{n\ge 0}\sum\limits_{m\ge 0}a_{n,m}x^ny^m\)​​,对于两个集合幂级数 \(F,G\),假设它们的系数分别为 \(f_{n,m}\) 和 \(g_{n,m}\),那么我们重定义它们的乘法为 \(F\times G=\sum\limits_{n\ge 0}\sum\limits_{m\ge 0}(\sum\limits_{p|q=n}\sum\limits_{r+s=m}f_{p,r}g_{q,s})x^ny^m\),也就是 \(f_{p,r}g_{q,s}\) 贡献到 \(x^{p|q}y^{r+s}\) 的位置,这样我们取它们乘积 \(x^Sy^{|S|}\) 前的系数作为它们子集卷积 \(x^S\) 前的系数即可,不难发现这样一来,两个集合 \(S,T\) 如果满足 \(S\cap T\ne\varnothing\),那么其就一定不满足 \(|S\cap T|=|S|+|T|\),也就一定不会贡献到 \(x^{S\cup T}y^{|S\cup T|}\) 处,也就证明了上述做法的正确性。

那么这东西该怎么实现呢,我们考虑将集合幂级数 \(F(x)\) 扩充之后的样子写成 \(\sum\limits_{S}x^SG_S(y)\)​ 的形式,其中 \(G_S(y)\) 是一个关于 \(y\)​​ 的形式幂级数,这样不难发现我们的乘法运算可以视作:将每个集合幂级数前的系数视作一个形式幂级数,系数的乘法视作多项式的乘法,然后对它们做一遍 or 卷积。因此考虑按照套路 FWTor,然后对每个 \(x^S\),将两个集合幂级数 \(x^S\) 前的系数进行多项式乘法,然后 IFWTor 回去即可。复杂度 \(2^nn^2\)。

注意到这里涉及形式幂级数的操作,因此我们也可以按照形式幂级数定义它们的逆、\(\ln\)、\(\exp\)。具体来说,对于集合幂级数 \(F\),我们定义:

  • 逆:定义 \(F\) 的逆为满足 \(F\times G=\epsilon\) 的集合幂级数 \(G\),其中 \(\times\) 在这部分默认为子集卷积,\(\epsilon\) 为满足 \([x^S]\epsilon=[S=\varnothing]\) 的集合幂级数。
  • \(\exp\):定义 \(\exp F\) 为满足 \(G=\sum\limits_{n\ge 0}\dfrac{F^n}{n!}\) 的集合幂级数 \(G\)
  • \(\ln\):定义 \(\ln F\) 为满足 \(\exp G=F\) 的集合幂级数 \(G\)
  • \(\exp_{\le k}\):定义 \(\exp_{\le k}\)​ 为满足 \(G=\sum\limits_{n=0}^k\dfrac{F^n}{n!}\) 的集合幂级数

由于我们子集卷积可以看作是将集合幂级数都一遍 FWTor,然后每一项按照形式幂级数的套路卷起来,再 IFWTor,因此上述操作也可视作,将集合幂级数 FWTor 一遍,然后每一个 \(x^S\) 前的系数分别 \(\text{inv}/\ln/\exp/\exp_{\le k}\)。注意,由于集合幂级数的题 \(n\) 一般都很小,因此在这里就大可不必 NTT 实现多项式 \(\text{inv}/\ln/\exp/\exp_{\le k}\) 了,可以平方地递推,具体递推方法可见上面那篇 blog。

64. P6570 [NOI Online #3 提高组] 优秀子序列

题解

65. P6846 [CEOI2019] Amusement Park

注意到对于一种翻转边集的状态,如果将所有边的状态反转,那么得到的图仍是一个 DAG,也就是说我们可以将所有翻转某个边集,使得得到的图是一个 DAG 的方案两两配对,并使每对中翻转的边集数量之和恰好等于 \(m\)。因此我们只用算出有多少种翻转边集之后是 DAG 的方案然后乘上 \(\dfrac{m}{2}\) 即可。

考虑怎么算翻转之后是 DAG 的方案,我们考虑设 \(f_S\) 表示集合 \(S\)​ 中形成 DAG 的方案数,那么考虑钦定一些点入度为 \(0\),记这个集合为 \(T\),那么显然 \(T\) 必须是一个独立集,否则总会存在 \(T\)​ 中的点入度非零,考虑枚举这个集合 \(T\),那么显然 \(S-T\) 也应是一个 DAG,但这样会算重,因此考虑容斥,即

\[f_S=\sum\limits_{\varnothing\ne T\subseteq S}[T\text{ is an independent set}]·(-1)^{|T|+1}f_{S-T}
\]

由于 Latex 上用中文太鸡肋了就换用了英文

注意到这东西可以写成子集卷积的形式,具体来说,即 \(F\) 为 \(f\) 的“生成集合幂级数”,\(G(x)\) 为满足 \([x^T]G(x)=[T\text{ is an independent set}]·(-1)^{|T|+1}\),那么 \(FG=F-1\),即 \(F=\dfrac{1}{1-G}\),子集 inv 一波即可。

66. LOJ #154 集合划分计数

搞不懂模板题卡常是啥心态

记 \(F\)​ 为满足 \([x^S]F(x)=[x\in\mathcal F]\),那么我们对 \(F\) 作 \(\exp_{\le k}\) 即可。

只不过此题过于卡常,所以交了 114514191981019260817998244353 发

卡常技巧:

  1. 求 \(\text{exp}_k\) 时候,如果该多项式最低非零项次数 \(>\dfrac{n}{k}\) 就不用快速幂了,直接将快速幂得到的数组每一项设为 \(0\) 即可。
  2. 在暴力多项式乘法时,可以找到两个多项式最低和最高的非零项 \(la,ra\) 和 \(lb,rb\),然后只枚举次数在 \([la,ra]\) 和 \([lb,rb]\) 的范围内的数即可,这样效率可以高不少。

不过还是几乎喜提最劣解

人傻常数大,需要狠命卡

67. LOJ #6673 EntropyIncreaser 与山林

首先先不考虑连通这个条件,考虑怎样求有多少张子图 \(G’=(V’,E’)\),满足 \(V’=S\),且 \(G’\) 中每个连通块都有欧拉回路,记这个方案数为 \(f_S\)。显然,对于一张图而言,每个连通块都有欧拉回路的充要条件是每个点的度都是偶数,因此我们考虑对每条边新建一个布尔型变量表示其有没有选,这样我们可以列出 \(|S|\) 个方程组,高斯消元一下,那么 \(f_S\) 就是 \(2\) 的自由元个数次方。

接下来考虑带上连通这个条件后怎么处理,我们记 \(F(x)\) 为满足 \([x^S]F(x)=f_S\) 的集合幂级数,再设 \(G(x)\) 表示 \([x^S]G(x)=\) 以 \(S\) 为点集的、存在欧拉回路(不是每个连通块都有欧拉回路)的子图个数,那么根据 P4841 的套路有 \(\exp G=F\)。现在已知 \(F\),子集 \(\ln\) 一波即可求出 \(G\)。

68. UOJ #94 【集训队互测2015】胡策的统计

考虑记 \(f_S\)​ 为以 \(S\)​ 为点集的子图个数,那么显然有 \(f_S=2^{cnt_S}\)​,其中 \(cnt_S\)​ 为 \(S\)​ 内部边的数量,再设 \(g_S\)​ 为以 \(S\)​ 为点集的连通子图个数,那么设 \(F,G\)​ 分别为 \(f,g\)​ 对应的集合幂级数,显然就有 \(F=\exp G\)​,\(\ln\)​ 一下可求出 \(G\)​。再设 \(h_S\)​ 为以集合 \(S\)​ 为点集的所有子图的连通值之和,也对应地设其生成集合幂级数为 \(H\)​,那么 \(H=\sum\limits_{n\ge 0}G^n\),也就是 \(\exp\) 里面去掉分母上的 \(n!\),也就相当于对每个 \(n\) 个连通块的方案乘了个 \(n!\),注意到这东西显然等于 \(\dfrac{1}{1-G}\),因此再一波子集 \(\ln\) 求出 \(H\),最终答案就是 \(H_U\)。

69. NFLSOJ #1060. 【2021 六校联合训练 NOI #40】白玉楼今天的饭

题解

FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ的更多相关文章

  1. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ

    众所周知,tzc 在 2019 年(12 月 31 日)就第一次开始接触多项式相关算法,可到 2021 年(1 月 1 日)才开始写这篇 blog. 感觉自己开了个大坑( 多项式 多项式乘法 好吧这个 ...

  2. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ

    因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...

  3. 【转】树莓派学习笔记——I2C Tools 学习笔记

    原文网址:http://blog.csdn.net/xukai871105/article/details/15029843 1.安装     I2C驱动载入和速率修改请查看博文[树莓派学习笔记——I ...

  4. OI多项式 简单学习笔记

    咕咕咕 先开个坑(其实是存模板来了) 一些特别简单的前置东西qwq 复数的计算 复数相加:向量相加,复数相乘.复数相乘:模长相乘,旋转量相加(就是复平面坐标轴逆时针旋转的角度) (当然也可以直接使用c ...

  5. 浅谈FFT(快速博立叶变换)&学习笔记

    0XFF---FFT是啥? FFT是一种DFT的高效算法,称为快速傅立叶变换(fast Fourier transform),它根据离散傅氏变换的奇.偶.虚.实等 特性,对离散傅立叶变换的算法进行改进 ...

  6. 《MarkMark学习笔记学习笔记》html学习笔记

    iframe里有一个srcdoc属性,很有用! window.location.href=document.referrer//可以实现返回上一级页面并刷新 HTML5权威指南©®,比较老的书了,有些 ...

  7. 【笔记】Cocos2dx学习笔记

    自建场景类 自建场景类BaseScene继承与Scene类,在init函数中添加了默认的,键盘与鼠标事件的响应,添加了一个用于读取XML文件的字典,添加了一个结束场景的方法. 类的声明代码如下: #i ...

  8. java RTTI笔记 之Class学习笔记(摘自java编程思想)

    1.java 使用Class对象来执行其RTTI.java 中每个类在编译后都会对应产生一个Class对象(更恰当地说是被保存在一个同名的.class文件中),甚至void和基本类型也都对应一个cla ...

  9. Python基础学习笔记,进阶学习笔记 出处

    参考 虫师-博客 http://www.cnblogs.com/fnng/category 随笔分类相关文章

随机推荐

  1. 10-1 Python 学习笔记

    1. 项目 在文本编辑器中新建一个文件,写几句话来总结一下你至此学到的 Python 知识,其中每一行都以"In Python you can"打头. 将这个文件命名为learni ...

  2. 初学python写个自娱自乐的小游戏

    一.摘要 当编写完后的代码执行第一次后达到了目标的预期效果,内心有些许满足,但是当突发情况产生后,程序便不能正常运行,于是准备从简单的版本开始出发,综合考虑使用者的需求,和使用过程中会遇到的问题,一步 ...

  3. 注解,@Qualifier+@Autowired 和 @Resource

    摘要: 项目中,对于AOP的使用,就是通过用注解来注入的. 更改之前的注解,是使用:@Qualifier+@Autowired   但是,通过这样注解,在项目启动阶段,需要自动扫描的过程是非常缓慢的, ...

  4. Spring 5 MVC 中的 Router Function 使用

    Spring 5 发行已经好几年了,里面提出了好几个新点子.其中一个就是 RouterFunction,这是个什么东西呢? Spring框架给我们提供了两种http端点暴露方式来隐藏servlet原理 ...

  5. Pandas核心用法

    目录 Numpy和Pandas Numpy科学计算 Pandas数据分析 安装jupyter notebook Numpy语法 创建和基本使用 切片索引 布尔索引 对位运算 矩阵的乘除 其他方法 Pa ...

  6. allegro查看线宽的方法

  7. 深入理解和运用Pandas的GroupBy机制——理解篇

    GroupBy是Pandas提供的强大的数据聚合处理机制,可以对大量级的多维数据进行透视,同时GroupBy还提供强大的apply函数,使得在多维数据中应用复杂函数得到复杂结果成为可能(这也是个人认为 ...

  8. 你知道怎么从jar包里获取一个文件的内容吗

    目录 背景 报错的代码 原先的写法 编写测试类 找原因 最终代码 背景 项目里需要获取一个excle文件,然后对其里的内容进行修改,这个文件在jar包里,怎么尝试都读取不成功,但是觉得肯定可以做到,因 ...

  9. docker的集群管理工具

    docker 集群管理三剑客: docker compose: Compose 是用于定义和运行多容器 Docker 应用程序的工具.通过 Compose,您可以使用 YML 文件来配置应用程序需要的 ...

  10. centos7 使用iptables

    关闭selinux,不关闭时,iptables不读取配置文件 重启生效 centos7 中默认的防火墙是firewalld,使用iptables需要先关闭firewalld防火墙,安装iptables ...