Contest 2050 and Codeforces Round #718 (Div. 1 + Div. 2) 题解
竟然上 GM 了,incredible(
A
首先如果 \(2050\nmid n\) 那显然就 \(-1\) 了,否则答案显然为 \(\dfrac{n}{2050}\) 的各位数字和。
B
显然这个最小值就是全部 \(nm\) 个数中最小的 \(m\) 个数之和,用个优先队列什么的维护一下即可,时间复杂度 \(nm\log m\)
C
zszz 凭我们的猜结论大法可知答案唯一存在并且每次往左往下走即可构造出答案。
D
首先们知道对于一个点而言,最优走法肯定是先走 \(\dfrac{k}{2}\) 步使得花费最小,然后原路返回。
因此考虑设 \(dp_{i,j,t}\) 为从 \((i,j)\) 出发走 \(t\) 步的最小花费,转移就枚举下一步到达的点随便更新一下即可,最后的 \(ans_{i,j}=dp_{i,j,k/2}\times 2\)
E
这个题还稍微有点意思,而且我上 GM 还要多亏了这道题拉开手速的差距啊(
首先特判掉全是 P 的情况,这个贡献显然为 \(1\)。
一个 observation 是如果 P 的连续段个数 \(\ge 2\),那么第一个 C 的位置显然只可能是第 \(1\) 个或者第 \(2\) 个,否则前两个都是 P,而 P 的连续段个数 \(\ge 2\),因此这两个连续段之间的间隔 \(\ge 2\),大于前两个 P 之间的距离 \(1\),不符合条件。
这样就可以分情况讨论了,如果第一个 C 的位置 \(\ge 3\),那 P 只可能形成一个连续段,不难发现合法的排列方式只可能形如 PPP...PPCCC...CC
,也就是说 P 是一段前缀,C 是一段后缀,枚举前缀长度随便算算即可。
如果第一个 C 的位置 \(\le 2\),那么手玩一下也可以发现合法的排列方式只可能形如 (P)CCC...CCPCPCPCPP...P(C)
枚举前面一段 C 的长度然后二分一下 CPCPCPCPC...PC
的长度即可。
所以说这个 \(\bmod 998244353\) 是假的(
F
这个题现场就差一点点没想出来啊啊啊!要是现场切掉了说不定涨的就不是 \(147\) 分而是 \(247\) 分甚至更多了(白 日 做 梦
首先看到这种最大值的期望时通常考虑容斥,这题也不例外,考虑设 \(f_i\) 表示团的大小 \(\le i\) 的概率,那么这个概率等价于将全部 \(n\) 个点染成黑白两种颜色,使得以每个点为中心,半径为 \(i\) 的区域中都至少包含一个白点。
这又可以进一步转化:对于所有白点,到其距离 \(\le i\) 的区域的并集刚好包含了整棵树。
这个概率可以通过树形 \(dp\) 求出,我们记 \(dp_{i,j}\) 表示对于 \(i\) 子树中的点,若 \(j\ge 0\) 则 \(i\) 上方深度最浅的被覆盖的点离 \(i\) 的距离为 \(j\) 的概率,否则表示 \(i\) 子树中深度最深的未被覆盖的点离 \(i\) 的距离为 \(-j-1\) 的概率,考虑转移,假设我们合并 \(dp_u\) 和 \(dp_v\),其中 \(u\) 为 \(v\) 的父亲,那么考虑两个值 \(dp_{u,i}\) 和 \(dp_{v,j}\),如果 \(i+j\ge 0\) 那么显然它可以覆盖全部 \(u\) 的子树,并且还能再向上覆盖 \(\max(i,j-1)\) 层,否则 \(i\) 子树中深度最深的未被覆盖的点离 \(i\) 的距离为 \(\min(i,j-1)\)。按照树形背包的套路转移即可,初始值 \(dp_{u,-1}=dp_{u,i}=\dfrac{1}{2}\)
时间复杂度 \(\mathcal O(n^3)\)。
G
看数据范围有点像网络流,事实上此题的的确确是网络流,考虑什么样的四个点能够组成题目中所说的平行四边形,我们将坐标系划分成一个个 \(2\times 2\) 的网格,下记:
- 横纵坐标都是偶数的点为 \(0\) 类点
- 横坐标为奇数,纵坐标为偶数的点为 \(1\) 类点
- 横坐标为偶数,纵坐标为奇数的点为 \(2\) 类点
- 横纵坐标都是奇数的点为 \(3\) 类点
那么将网格图做这样的划分后,可能的平行四边形有以下情况(这里蒯了 George1123 的图):
不难发现这样的平行四边形一定存在一条路径包含四类点的边,并且起点一定是 \(1\) 号点,终点一定是 \(3\) 号点,即 \(1\to 0\to 2\to 3\),并且这显然是组成题目所说的平行四边形的充要条件。
故考虑在相邻的 \((1,0),(0,2),(2,3)\) 点之间连边,然后拆点跑最小割即最大流即可。
Contest 2050 and Codeforces Round #718 (Div. 1 + Div. 2) 题解的更多相关文章
- Educational Codeforces Round 76 (Rated for Div. 2) E. The Contest
Educational Codeforces Round 76 (Rated for Div. 2) E. The Contest(dp+线段树) 题目链接 题意: 给定3个人互不相同的多个数字,可以 ...
- Educational Codeforces Round 43 (Rated for Div. 2)
Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...
- Educational Codeforces Round 35 (Rated for Div. 2)
Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...
- Educational Codeforces Round 48 (Rated for Div. 2) CD题解
Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...
- Educational Codeforces Round 60 (Rated for Div. 2) 题解
Educational Codeforces Round 60 (Rated for Div. 2) 题目链接:https://codeforces.com/contest/1117 A. Best ...
- Educational Codeforces Round 59 (Rated for Div. 2) DE题解
Educational Codeforces Round 59 (Rated for Div. 2) D. Compression 题目链接:https://codeforces.com/contes ...
- Educational Codeforces Round 58 (Rated for Div. 2) 题解
Educational Codeforces Round 58 (Rated for Div. 2) 题目总链接:https://codeforces.com/contest/1101 A. Min ...
随机推荐
- 4.14——208. 实现 Trie (前缀树)
前缀树(字典树)是经典的数据结构,以下图所示: 本来处理每个节点的子节点集合需要用到set,但是因为输入规定了只有26个小写字母,可以直接用一个[26]的数组来存储. 关于ASCII代码: Java ...
- 剑指offer:JZ9 用两个栈实现队列
JZ9 用两个栈实现队列 描述 用两个栈来实现一个队列,使用n个元素来完成 n 次在队列尾部插入整数(push)和n次在队列头部删除整数(pop)的功能. 队列中的元素为int类型.保证操作合法,即保 ...
- Spring session redis ERR unknown command 'CONFIG'
部署线上服务启动报错 redis.clients.jedis.exceptions.JedisDataException: ERR unknown command 'CONFIG' Redis CON ...
- spring cloud ribbon的使用
上节我们学会了如何搭建一个eureka server服务,本节我们使用ribbon来实现服务间的调用. 前置条件: 1.创建几个工程 eureka-server |- 服务注册 ...
- [HNOI2009]双递增序列(洛谷P4728)+小烈送菜(内部训练题)——奇妙的dp
博主学习本题的经过嘤嘤嘤: 7.22 : 听学长讲(一知半解)--自己推(推不出来)--网上看题解--以为自己会了(网上题解是错的)--发现错误以后又自己推(没推出来)--给学长发邮件--得到正确解法 ...
- C/C++编程笔记:浪漫流星雨表白装b程序
作为一个未来可能会成为一个专业程序员的小伙们,不知道你们现在学到哪里了,学了点东西之后有没有想在你女朋友面前装个大大的b呢,今天小编就给你一个机会来研究一下下边的代码吧,保证大写的N,当然大佬是排除在 ...
- 对JavaScript中局部变量、全局变量和闭包的理解
对js中局部变量.全局变量和闭包的理解 局部变量 对于局部变量,js给出的定义是这样的:在 JavaScript函数内部声明的变量(使用 var)是局部变量,所以只能在函数内部访问它.(该变量的作用域 ...
- Windows 2008 R2 NTP 时钟同步配置
一.配置 本地组策略 a.windows+R 或 "开始菜单" | "运行" ,打开运行窗口. 输入gpedit.msc打开本地组策略 b.在 本地组策略 ...
- DeWeb 简介
DeWeb是一个可以直接将Delphi程序快速转换为网页应用的工具! 使用DeWeb, 开发者不需要学习HTML.JavaScript.Java.PHP.ASP.C#等新知识,用Delphi搞定一切. ...
- char* 和 char[] 的区别
一.代码 有关下面代码,p和q的区别是什么: int main(int argc, char *argv[]) { char* p = "Hello World"; char q[ ...