题面传送门

这道题为什么我就没想出来呢/kk

对于每组询问 \([l,r]\),我们首先求出区间 \([l,r]\) 中最小值的位置 \(x\),这个可以用 ST 表实现 \(\mathcal O(n\log n)-\mathcal O(1)\) 维护,那么显然 \(\forall l'\in[l,x],r'\in[x,r],\min\limits_{t\in[l',r']}a_t=a_x\),产生的贡献为 \((r-x+1)(x-l+1)a_x\),于是我们只用计算 \([x+1,r],[l,x-1]\) 两个区间的贡献即可。

这个东西怎么计算呢?考虑枚举区间的右端点 \(R\),我们要计算 \([x+1,R],[x+2,R],\cdots,[R,R]\) 这 \(R-x\) 个区间的最小值之和,我们记 \(pre_x\) 为最大的满足 \(y<x,a_y\le a_x\) 的 \(y\)——\(pre_x\) 显然可以用单调栈在线性时间内求出。再记序列 \(p_1,p_2,\cdots,p_k\) 满足 \(p_0=0,p_k=R,\forall i\in[1,k],p_{i-1}=pre_{p_i}\) 的序列(说白了就是单调栈求完 \(pre_R\) 之后,栈底到栈顶位置上元素的下标依次形成的序列),那么显然 \(\forall i\in[1,k],l\in(p_{i-1},p_i]\) 都有 \(\min\limits_{t=l}^xa_t=a_{p_i}\),也就是说 \(a_{p_i}\) 位置会成为 \(p_i-p_{i-1}\) 个位置的最小值。如果我们记 \(f_R\) 为 \([1,R],[2,R],\cdots,[R,R]\) 的最小值之和,那么根据之前的推论有递推式 \(f_R=f_{pre_R}+(R-pre_R)a_R\),可线性求出。

这里还有一个问题,那就是我们要计算 \([x+1,R],[x+2,R],\cdots,[R,R]\) 的贡献 instead of \([1,R],[2,R],\cdots,[R,R]\),也就是说我们要减去 \([1,R],[2,R],\cdots,[x,R]\) 的贡献。这东西又怎么求呢?很明显 \(p\) 序列有一个性质就是必定 \(\exist id\in[1,k]\) 满足 \(p_{id}=x\),正确性显然,并且容易注意到 \(\forall l\in[1,x],\min\limits_{t=l}^Ra_t=\min\limits_{t=l}^xa_t\),也就是说 \([1,R],[2,R],\cdots,[x,R]\) 的贡献其实就是 \([1,x],[2,x],\cdots,[x,x]\),因此只需拿 \(f_R-f_x\) 就可以得到 \([x+1,R],[x+2,R],\cdots,[R,R]\) 的贡献。

故最终 \([x+1,r]\) 的贡献之和就是 \(\sum\limits_{R=x+1}^rf_R-f_x\),这个显然前缀和随便算一下就行了。求 \([l,x-1]\) 的贡献也同理。

时间复杂度 \(n\log n\),瓶颈在于 RMQ。

const int MAXN=1e5;
const int LOG_N=18;
const int INF=0x3f3f3f3f;
int n,qu,a[MAXN+5],pre[MAXN+5],nxt[MAXN+5];
ll fl[MAXN+5],fr[MAXN+5],gl[MAXN+5],gr[MAXN+5];
pii st[MAXN+5][LOG_N+2];
pii query(int l,int r){
int k=31-__builtin_clz(r-l+1);
return min(st[l][k],st[r-(1<<k)+1][k]);
}
int main(){
scanf("%d%d",&n,&qu);a[0]=a[n+1]=-INF;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
stack<int> stk;stk.push(0);
for(int i=1;i<=n;i++){
while(!stk.empty()&&a[stk.top()]>=a[i]) stk.pop();
pre[i]=stk.top();stk.push(i);
} while(!stk.empty()) stk.pop();
stk.push(n+1);
for(int i=n;i;i--){
while(!stk.empty()&&a[stk.top()]>=a[i]) stk.pop();
nxt[i]=stk.top();stk.push(i);
}
// for(int i=1;i<=n;i++) printf("%d %d\n",pre[i],nxt[i]);
for(int i=1;i<=n;i++) fl[i]=fl[pre[i]]+1ll*a[i]*(i-pre[i]),gl[i]=gl[i-1]+fl[i];
for(int i=n;i;i--) fr[i]=fr[nxt[i]]+1ll*a[i]*(nxt[i]-i),gr[i]=gr[i+1]+fr[i];
for(int i=1;i<=n;i++) st[i][0]=mp(a[i],i);
for(int i=1;i<=LOG_N;i++) for(int j=1;j+(1<<i)-1<=n;j++)
st[j][i]=min(st[j][i-1],st[j+(1<<i-1)][i-1]);
while(qu--){
int l,r;scanf("%d%d",&l,&r);int p=query(l,r).se;
printf("%lld\n",1ll*a[p]*(p-l+1)*(r-p+1)+gr[l]-gr[p]-1ll*fr[p]*(p-l)+gl[r]-gl[p]-1ll*fl[p]*(r-p));
}
return 0;
}

洛谷 P3246 - [HNOI2016]序列(单调栈+前缀和)的更多相关文章

  1. 洛谷P3246 [HNOI2016]序列 [莫队]

    传送门 思路 看到可离线.无修改.区间询问,相信一定可以想到莫队. 然而,莫队怎么转移是个大问题. 考虑\([l,r]\rightarrow[l,r+1]\)时答案会怎样变化?(左端点变化时同理) \ ...

  2. 洛谷P3246 [HNOI2016]序列(离线 差分 树状数组)

    题意 题目链接 Sol 好像搞出了一个和题解不一样的做法(然而我考场上没写出来还是爆零0) 一个很显然的思路是考虑每个最小值的贡献. 预处理出每个数左边第一个比他小的数,右边第一个比他大的数. 那么\ ...

  3. 洛谷P3246 [HNOI2016]序列

    传送门 题解 //minamoto #include<iostream> #include<cstdio> #define ll long long using namespa ...

  4. 洛谷P4198 楼房重建 单调栈+线段树

    正解:单调栈+线段树 解题报告: 传送门! 首先考虑不修改的话就是个单调栈板子题昂,这个就是 然后这题的话,,,我怎么记得之前考试好像有次考到了类似的题目昂,,,?反正我总觉着这方法似曾相识的样子,, ...

  5. 洛谷P4147 玉蟾宫 单调栈/悬线法

    正解:单调栈/悬线法 解题报告: ummm这题我当初做的时候一点思路也没有只会暴力出奇迹:D(啊听说暴力好像能水过去呢,,, 然后当初是看的题解,然后学了下悬线法 然后就忘了:D 然后我现在看发现看不 ...

  6. 【bzoj4540】[Hnoi2016]序列 单调栈+离线+扫描线+树状数组区间修改区间查询

    题目描述 给出一个序列,多次询问一个区间的所有子区间最小值之和. 输入 输入文件的第一行包含两个整数n和q,分别代表序列长度和询问数.接下来一行,包含n个整数,以空格隔开,第i个整数为ai,即序列第i ...

  7. 洛谷 P4697 Balloons [CEOI2011] 单调栈/dp (待补充qwq)

    正解:单调栈/dp 解题报告: 先放个传送门qwq 话说这题是放在了dp的题单里呢?但是听说好像用单调栈就可以做掉所以我就落实下单调栈的解法好了qwq (umm主要如果dp做好像是要斜率优化凸壳维护双 ...

  8. 洛谷P3400 仓鼠窝(单调栈)

    P3400 仓鼠窝 题目描述 萌萌哒的Created equal是一只小仓鼠,小仓鼠自然有仓鼠窝啦. 仓鼠窝是一个由n*m个格子组成的行数为n.列数为m的矩阵.小仓鼠现在想要知道,这个矩阵中有多少个子 ...

  9. 洛谷 P1198 [JSOI2008]最大数——单调栈/线段树

    先上一波题目 https://www.luogu.org/problem/P1198 题目要求维护后缀最大值 以及在数列的最后面添加一个数 这道题呢我们有两种做法 1.单调栈 因为只需要维护后缀最大值 ...

随机推荐

  1. MAC 安装 apache ab 压力测试工具以及遇到的坑

    ab 是apache对 http服务器进行压力测试的工具,它可以测试出服务器每秒可以处理多少请求.本文记录mac版本安装 ab 的步骤以及遇到的坑. 下载 进入 apache ab官网 下载页面. 安 ...

  2. Spring动态添加定时任务

    Spring动态添加定时任务 一.背景 二.需求和实现思路 1.能够动态的添加一个定时任务. 2.能够取消定时任务的执行. 3.动态的修改任务执行的时间. 4.获取定时任务执行的异常 三.代码实现 四 ...

  3. 期望dp好题选做

    前言: 最近连考两场期望dp的题目,sir说十分板子的题目我竟然一点也不会,而且讲过以后也觉得很不可改.于是开个坑. 1.晚测10 T2 大佬(kat) 明明有\(O(mlog)\)的写法,但是\(m ...

  4. 【做题记录】[NOIP2011 提高组] 观光公交

    P1315 [NOIP2011 提高组] 观光公交 我们想在 \(k\) 次加速每一次都取当前最优的方案加速. 考虑怎样计算对于每一条边如果在当前情况下使用加速器能够使答案减少的大小. 如果当前到达某 ...

  5. 牛客网 剑指Offer 索引

    二维数组中的查找 替换空格 从尾到头打印链表 重建二叉树 用两个栈实现队列 旋转数组的最小数字 斐波那契数列 跳台阶 变态跳台阶 矩形覆盖 二进制中1的个数 数值的整数次方 调整数组顺序使奇数位于偶数 ...

  6. Spoj 2878 KNIGHTS - Knights of the Round Table | 双联通分量 二分图判定

    题目链接 考虑建立原图的补图,即如果两个骑士不互相憎恨,就在他们之间连一条无向边. 显而易见的是,如果若干个骑士在同一个点数为奇数的环上时,他们就可以在一起开会.换句话说,如果一个骑士被一个奇环包含, ...

  7. hdu 5095 Linearization of the kernel functions in SVM(模拟,分类清楚就行)

    题意: INPUT: The input of the first line is an integer T, which is the number of test data (T<120). ...

  8. 并发编程从零开始(十四)-Executors工具类

    并发编程从零开始(十四)-Executors工具类 12 Executors工具类 concurrent包提供了Executors工具类,利用它可以创建各种不同类型的线程池 12.1 四种对比 单线程 ...

  9. shell 脚本控制命令的执行顺序

    &&,||,(),{},& 五个符号的运用shell脚本执行命令的时候,有时候会依赖于前一个命令是否执行成功.而&&和||就是用来判断前一个命令执行效果的. 也 ...

  10. CSP2020-儒略历

    大家可以在洛谷提交: 题目描述 为了简便计算,天文学家们使用儒略日(Julian day)来表达时间.所谓儒略日,其定义为从公元前 4713 年 1 月 1 日正午 12 点到此后某一时刻间所经过的天 ...