题目:CF474D Flowers

传送门


DP?递推?

首先可以很快看出这是一道 DP 的题目,但与其说是 DP,还不如说是递推

大家还记得刚学递推时教练肯定讲过的一道经典例题吗?就是爬楼梯,一个有 \(n\) 阶的楼梯,一个人爬上去,每次可以爬一阶也可以爬两阶,问有多少种爬法?其实这道题也是一样的,只不过把 \(2\) 换成了 \(k\) 而已。

于是我们开始分析,定义 \(dp[i]\) 为吃 \(i\) 个蛋糕的吃法总数。

很容易看出,如果 \(i<k\),就不可以一口气吃掉,只能一个一个吃,方法为 \(1\) 种。

如果 \(i==k\),就既可以一个一个吃掉,也可以一口气全部吃完,方法为 \(2\) 种。

如果 \(i>k\),就有两种吃法,既可以先吃 \(i-1\) 个,然后再吃一个,也可以先吃 \(i-k\) 个,再吃 \(k\) 个。方法为 \(dp[i-1]+dp[i-k]\) 种。

最后记得要开 long long,而且要一边加一边模 \(1000000007\)。

核心代码:

if(dp[i])continue;
if(i<k)
dp[i]=1;
else if(i==k)
dp[i]=2;
else
dp[i]=(dp[i-1]+dp[i-k])%1000000007;
sum[i]=(sum[i-1]+dp[i])%1000000007;

因为一组数据只有一个 \(k\),但是有很多组关于这个 \(k\) 的测试点,所以可以用一个前缀和数组统计 \(dp_1\sim dp_i\) 的和,然后根据题目中 \(mod\ 1000000007\)。


玄学优化

其实这个优化也不难想到。既然一组数据中只会有一个 \(k\),那么说明不管怎么算,\(dp[i]\) 的值算出来都是相等的。那么可以判断一下当前出现的最大 \(x_2\),如果一组输入的 \(x_2\) 值小于最大值,就说明 \(dp[x_2]\) 已经计算过,直接输出即可。


\(Code\)

#include<bits/stdc++.h>
#define ll long long
using namespace std;
int t,k,x1,x2,Max=1;
ll dp[100005],sum[100005];
int main(){
scanf("%d %d",&t,&k);
while(t--){
scanf("%d %d",&x1,&x2);
if(Max>=x2){ //优化:判断x2和max(x2)的大小
printf("%lld\n",(sum[x2]-sum[x1-1])%1000000007);
continue;//直接跳过
}
for(int i=Max;i<=x2;i++){//只计算没计算过的
if(dp[i])continue;
if(i<k)
dp[i]=1;
else if(i==k)
dp[i]=2;
else
dp[i]=(dp[i-1]+dp[i-k])%1000000007;
sum[i]=(sum[i-1]+dp[i])%1000000007;
}
printf("%lld\n",(sum[x2]-sum[x1-1])%1000000007);
Max=x2;//更新Max的值
}
return 0;
}

究竟是什么地方错了?

然后你交上去发现WA了!

这也就是一个本蒟蒻在做题时犯的错误。

一般要取余的题都是一边计算一边取模,所以可能会造成dp数组中前面的值大于后面的值的情况。在最终计算 \(x_1\sim x_2\) 的时候做的减法运算可能是负数,负数取模就出事了。

那如何解决呢?其实很简单,只需要在取模之前再加上一个 \(1000000007\) 就可以了。

\(Code\)

#include<bits/stdc++.h>
#define ll long long
using namespace std;
int t,k,x1,x2,Max=1;
ll dp[100005],sum[100005];
int main(){
scanf("%d %d",&t,&k);
while(t--){
scanf("%d %d",&x1,&x2);
if(Max>=x2){
printf("%lld\n",(sum[x2]-sum[x1-1]+1000000007)%1000000007);
continue;
}
for(int i=Max;i<=x2;i++){
if(dp[i])continue;
if(i<k)
dp[i]=1;
else if(i==k)
dp[i]=2;
else
dp[i]=(dp[i-1]+dp[i-k])%1000000007;
sum[i]=(sum[i-1]+dp[i])%1000000007;
}
printf("%lld\n",(sum[x2]-sum[x1-1]+1000000007)%1000000007);
Max=x2;
}
return 0;
}

终于A了!www

CF474D Flowers 题解的更多相关文章

  1. CF474D. Flowers

    D. Flowers time limit per test 1.5 seconds memory limit per test 256 megabytes input standard input ...

  2. Luogu CF451E Devu and Flowers 题解报告

    题目传送门 [题目大意] 有n种颜色的花,第i种颜色的花有a[i]朵,从这些花中选m朵出来,问有多少种方案?答案对109+7取模 [思路分析] 这是一个多重集的组合数问题,答案就是:$$C_{n+m- ...

  3. CF740B Alyona and flowers 题解

    Content 有 \(n\) 个数 \(a_1,a_2,a_3,...,a_n\),给定 \(m\) 个区间,你可以选择一些区间使得它们的总和最大(也可以不选),求这个最大的总和. 数据范围:\(1 ...

  4. [题解] [CF451E] Devu and Flowers

    题面 题解 就是一个求\(\sum_{i= 1}^{n}x _ i = m\)的不重复多重集的个数, 我们可以由容斥原理得到: \[ ans = C_{n + m - 1}^{n - 1} - \su ...

  5. 题解 【POJ1157】LITTLE SHOP OF FLOWERS

    先把题目意思说一下: 你有F束花,编号为\(1\)~\(F\)(\(1<=F<=100\)),\(V\)个花瓶,编号为\(1\) ~\(V\)(\(1<=V<=100\)), ...

  6. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  7. Codeforces Round #381 (Div. 2)B. Alyona and flowers(水题)

    B. Alyona and flowers Problem Description: Let's define a subarray as a segment of consecutive flowe ...

  8. CF459B Pashmak and Flowers (水

    Pashmak and Flowers Codeforces Round #261 (Div. 2) B. Pashmak and Flowers time limit per test 1 seco ...

  9. Codeforces Round #271 (Div. 2)题解【ABCDEF】

    Codeforces Round #271 (Div. 2) A - Keyboard 题意 给你一个字符串,问你这个字符串在键盘的位置往左边挪一位,或者往右边挪一位字符,这个字符串是什么样子 题解 ...

随机推荐

  1. 『无为则无心』Python基础 — 12、Python运算符详细介绍

    目录 1.表达式介绍 2.运算符 (1)运算符的分类 (2)算数运算符 (3)赋值运算符 (4)复合赋值运算符 (5)比较运算符 3.逻辑运算符 拓展1:数字之间的逻辑运算 拓展2:Python中逻辑 ...

  2. ArcGIS连接Postgres 数据库

    ArcGIS连接Postgres 数据库 此前在使用ArcGIS的过程中,一般使用文件方式对数据进行管理,后面也有使用 GeoDatabase 数据库对数据进行管理,但是这种管理方式也存在一些弊端,特 ...

  3. 用jquery通过点击事件把下拉列表币种的值传给文本框1,再通过文本框1的币种名称用if转化为币别传值给文本框2保存

    <script src="https://cdn.staticfile.org/jquery/2.2.4/jquery.min.js"></script>& ...

  4. 一文带你了解.Net信号量

    本文主要讲解.Net基于Semaphore带大家了解信号量 信号量举例 大家去银行去银行取钱,互斥锁管理的时一个柜台是否正在处理业务,而信号量管理的是整个柜台是否正在处理业务,每当有一个柜台处理完成之 ...

  5. CAS你知道吗?底层如何实现?ABA问题又是什么?关于这些你知道答案吗

    CAS你知道吗?如何实现? 1. compareAndSet 在volatile当中我们提到,volatile不能保证原子语义,所以当用到变量自增时,如果用到synchronized会太"重 ...

  6. 8、inotify和resync的优缺点

    只有对外提供访问的服务需要有端口号,本地服务无端口号: 8.1.inotify的优缺点: 1.优点: 监控文件系统事件变化,通过同步工具实现实时的数据同步 2.缺点: 并发如果大于200个文件(10- ...

  7. 面试题五:Spring

    Spring IoC 什么是IoC? 容器创建Bean对象,将他们装配在一起,配置并且管理它们的完整生命周期. Spring容器使用依赖注入来管理组成应用程序的Bean对象: 容器通过提供的配置元数据 ...

  8. 详解 MD5 信息摘要算法

    对于软件研发人员来说 MD5 不是一个陌生的词汇,平时的软件研发中,经常使用 MD5 校验消息是否被篡改.验证文件完整性,甚至将MD5当作加密算法使用. MD5虽不陌生,但不是所有研发人员都了解其算法 ...

  9. Mybatis学习(2)以接口的方式编程

    前面一章,已经搭建好了eclipse,mybatis,mysql的环境,并且实现了一个简单的查询.请注意,这种方式是用SqlSession实例来直接执行已映射的SQL语句: session.selec ...

  10. Springboot quartz集群(3) — 多节点发送邮件

    本期将提供quartz集群能力 集群案例分析: 上一期的邮件发送功能,若在服务需要部署多节点,但定时任务不支持集群,因此,多节点定时任务势必会同时运行, 若向用户发送邮件通知,这种情况下会向用户发送两 ...