AT2689 [ARC080D] Prime Flip
简要题解如下:
区间修改问题,使用差分转化为单点问题。
问题变成,一开始有 \(2n\) 个点为 \(1\),每次操作可以选择 \(r - l\) 为奇质数的两个点 \(l, r\) 使其
^\(1\)。根据哥德巴赫猜想可以发现,若 \(r - l\) 为奇质数显然一次即可,若 \(r - l\) 为偶数则需两次,若 \(r - l\) 为奇数则需三次。
近一步可以发现,若想消去两个点 \(l, r\) 则涉及其他点是可以通过调整使得直接消去两个点的。
更近一步可以发现,将所有点按照奇偶分类,显然若消去奇偶性相同的两个数只能 \(2\) 次,那么首先将差是奇质数的点一起消去肯定是最优的。
因为差是奇质数的点必然一个为偶数一个为奇数构成二分图,于是可以使用匈牙利或网络流解决二分图最大匹配问题。
剩下的肯定要同集合内部按照 \(2\) 次消去,最后若还剩一个元素才使用 \(3\) 次的方法。
#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
#define Next(i, u) for (int i = cur[u]; i; i = e[i].next)
const int N = 2e4 + 5;
const int M = 1e7 + 5;
struct edge { int v, next, w;} e[N << 1];
int n, s, t, F, ans, cnt, tot = 1, ton[2], a[N], h[N], d[M];
namespace PR {
bool iprime[M]; int tot, prime[M];
void sieve(int L) {
iprime[1] = 1;
rep(i, 2, L) {
if(!iprime[i]) prime[++tot] = i;
for (int j = 1; j <= tot && i * prime[j] <= L; ++j) {
iprime[i * prime[j]] = true;
if(i % prime[j] == 0) break;
}
}
}
}
namespace FL {
bool book[N]; int dep[N], cur[N];
bool bfs(int s, int t) {
rep(i, s, t) cur[i] = h[i], dep[i] = -t;
queue <int> Q;
dep[s] = 1, Q.push(s);
while (!Q.empty()) {
int u = Q.front(); Q.pop();
Next(i, u) {
int v = e[i].v; if(!e[i].w || dep[v] > 0) continue;
dep[v] = dep[u] + 1, Q.push(v);
}
}
return dep[t] > 0;
}
int dfs(int u, int lim) {
if(u == t) return lim;
int flow = 0, rflow = 0; book[u] = true;
Next(i, u) {
int v = e[i].v; cur[u] = i;
if(!book[v] && dep[v] == dep[u] + 1 && e[i].w && (rflow = dfs(v, min(e[i].w, lim)))) {
flow += rflow, lim -= rflow, e[i].w -= rflow, e[i ^ 1].w += rflow;
if(!lim) break;
}
}
book[u] = false; return flow;
}
}
void add(int u, int v, int w) {
e[++tot].v = v, e[tot].w = w, e[tot].next = h[u], h[u] = tot;
e[++tot].v = u, e[tot].w = 0, e[tot].next = h[v], h[v] = tot;
}
int main () {
cin >> n;
rep(i, 1, n) cin >> a[i], d[a[i]] ^= 1, d[a[i] + 1] ^= 1;
PR :: sieve(M - 1);
s = cnt = 1;
rep(i, 1, M - 1) if(d[i]) a[++cnt] = i, ++ton[i & 1];
t = ++cnt;
rep(i, 2, cnt - 1) {
if(a[i] & 1) add(s, i, 1);
else add(i, t, 1);
}
rep(i, 2, cnt - 1) if(a[i] & 1) {
rep(j, 2, cnt - 1) if(!(a[j] & 1) && !(PR :: iprime[abs(a[j] - a[i])])) add(i, j, 1);
}
while (FL :: bfs(s, t)) ans += FL :: dfs(s, cnt);
if((ton[0] - ans) & 1) F = 1;
ans += 2 * ((ton[0] - ans) / 2 + (ton[1] - ans) / 2);
ans += F * 3;
printf("%d", ans);
return 0;
}
首先区间修改差分转单点是非常重要的,可以减少有效修改点数,方便于观察问题。
对于某个数能被质数 / 奇质数组成的问题,一定要敏锐地想到 哥德巴赫猜想
AT2689 [ARC080D] Prime Flip的更多相关文章
- [Arc080F]Prime Flip
[Arc080F]Prime Flip Description 你有无限多的"给给全",编号为1,2,3,....开始时,第x1,x2,...,xN个"给给全" ...
- AT2689 Prime Flip
传送门 这个题是真的巧妙 首先一个很巧妙的思路,差分 考虑假如\(a_i!=a_{i-1}\),则\(b_i=1\),否则\(b_i=0\) 这样一来,一个区间的翻转就变成了对于两个数的取反了 然后我 ...
- Prime Flip AtCoder - 2689
发现我们每次区间取反,相邻位置的正反关系只有两个位置发生改变 我们定义bi为ai和ai-1的正反关系,即ai=ai-1时bi=0,否则bi=1,每次取反l~r,b[l]和b[r+1]会发生改变 容易发 ...
- 【arc080F】Prime Flip
Portal --> arc080_f Solution 这题的话..差分套路题(算吗?反正就是想到差分就很好想了qwq) (但是问题就是我不会这种套路啊qwq题解原话是:&quo ...
- 【ARC080F】Prime Flip 差分+二分图匹配
Description 有无穷个硬币,初始有n个正面向上,其余均正面向下. 你每次可以选择一个奇质数p,并将连续p个硬币都翻转. 问最小操作次数使得所有硬币均正面向下. Input 第一行 ...
- 【Atcoder】ARC 080 F - Prime Flip
[算法]数论,二分图最大匹配 [题意]有无限张牌,给定n张面朝上的牌的坐标(N<=100),其它牌面朝下,每次操作可以选定一个>=3的素数p,并翻转连续p张牌,求最少操作次数使所有牌向下. ...
- [atARC080F]Prime Flip
构造一个数组$b_{i}$(初始为0),对于操作$[l_{i},r_{i}]$,令$b_{l_{i}}$和$b_{r_{i}+1}$值异或1,表示$i$和$i-1$的差值发生改变,最终即要求若干个$b ...
- Java基础之写文件——从多个缓冲区写(GatheringWrite)
控制台程序,使用单个写操作将数据从多个缓冲区按顺序传输到文件,这称为集中写(GatheringWrite)操作.这个功能的优势是能够避免在将信息写入到文件中之前将信息复制到单个缓冲区中.从每个缓冲区写 ...
- Atcoder 乱做
最近感觉自己思维僵化,啥都不会做了-- ARC103 F Distance Sums 题意 给定第 \(i\) 个点到所有点的距离和 \(D_i\) ,要求构造一棵合法的树.满足第 \(i\) 个点到 ...
随机推荐
- 第三十七个知识点: The Number Field Sieve
第三十七个知识点: The Number Field Sieve 数域筛法(The Number Field Sieve ,NFS)是已知的分解算法中最有效率的.它的运行时间取决于被分解的数的大小而不 ...
- Eclipse中英文对照表(整理笔记)
Eclipse百度界面中英文对照 目录 Eclipse百度界面中英文对照 0.菜单栏 1.File 文件菜单 2.Edit 编辑菜单 3.Source 源代码 4.Refactor 重构 5.Navi ...
- Java开发之项目分包
在我们开始准备写一个大点规模的项目时,我们不能随便地从main函数就开始往下写,要有清晰的逻辑思路和各个层面上的数据的传递和交互. 同时在我们写项目时也应该分出不同的包来做不同的事情,比如view包就 ...
- 按需引入element-ui报错
按需引入element-ui报错 项目用的脚手架是 vue-cli 3 按照官方文档按需引入组件: https://element.eleme.cn/#/zh-CN/component/quickst ...
- 疯狂的类构造器Builder模式,链式调用
疯狂的类构造器 最近栈长在做 Code Review 时,发现一段创建对象的方法: Task task = new Task(112, "紧急任务", "处理一下这个任务 ...
- [Atcoder Regular Contest 071 F & JZOJ5450]Neutral
题目大意 一个无限长的序列\(a\), 需要满足 1.数列中的每一个数在\(1\)到\(n\)之间. 2.对于\(i>=n, j>=n\), \(a_i=a_j\). 3.对于\(i< ...
- 前端后端通信初步尝试(javascript - flask)
在某项目中,需要使用python flask做后端功能开发,web提供功能入口. 此时需要使用Ajax通信. 由于以前从未接触过网络传输,记录了一些基础知识. 资料参考<HTML5+CSS3+J ...
- alias 中使用 awk
alias hehistory10='history |awk "{print \$2}"|sort|uniq -c|sort -rn|head -10' alias lv='ls ...
- js跨域请求解决方案
什么是跨域? 跨域是指一个域下的文档或脚本试图去请求另一个域下的资源,这里跨域是广义的. 广义的跨域: 1.) 资源跳转: A链接.重定向.表单提交 2.) 资源嵌入: <link>.&l ...
- Java手动创建Web项目
原文链接:https://www.toutiao.com/i6495693288043971086/ 为了便于理解Web项目结构,我们手动创建整个过程. 先启动Tomcat 下载Tomcat7.0 解 ...