简要题解如下:

  1. 区间修改问题,使用差分转化为单点问题。

  2. 问题变成,一开始有 \(2n\) 个点为 \(1\),每次操作可以选择 \(r - l\) 为奇质数的两个点 \(l, r\) 使其 ^ \(1\)。

  3. 根据哥德巴赫猜想可以发现,若 \(r - l\) 为奇质数显然一次即可,若 \(r - l\) 为偶数则需两次,若 \(r - l\) 为奇数则需三次。

  4. 近一步可以发现,若想消去两个点 \(l, r\) 则涉及其他点是可以通过调整使得直接消去两个点的。

  5. 更近一步可以发现,将所有点按照奇偶分类,显然若消去奇偶性相同的两个数只能 \(2\) 次,那么首先将差是奇质数的点一起消去肯定是最优的。

  6. 因为差是奇质数的点必然一个为偶数一个为奇数构成二分图,于是可以使用匈牙利或网络流解决二分图最大匹配问题。

  7. 剩下的肯定要同集合内部按照 \(2\) 次消去,最后若还剩一个元素才使用 \(3\) 次的方法。

#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
#define Next(i, u) for (int i = cur[u]; i; i = e[i].next)
const int N = 2e4 + 5;
const int M = 1e7 + 5;
struct edge { int v, next, w;} e[N << 1];
int n, s, t, F, ans, cnt, tot = 1, ton[2], a[N], h[N], d[M];
namespace PR {
bool iprime[M]; int tot, prime[M];
void sieve(int L) {
iprime[1] = 1;
rep(i, 2, L) {
if(!iprime[i]) prime[++tot] = i;
for (int j = 1; j <= tot && i * prime[j] <= L; ++j) {
iprime[i * prime[j]] = true;
if(i % prime[j] == 0) break;
}
}
}
}
namespace FL {
bool book[N]; int dep[N], cur[N];
bool bfs(int s, int t) {
rep(i, s, t) cur[i] = h[i], dep[i] = -t;
queue <int> Q;
dep[s] = 1, Q.push(s);
while (!Q.empty()) {
int u = Q.front(); Q.pop();
Next(i, u) {
int v = e[i].v; if(!e[i].w || dep[v] > 0) continue;
dep[v] = dep[u] + 1, Q.push(v);
}
}
return dep[t] > 0;
}
int dfs(int u, int lim) {
if(u == t) return lim;
int flow = 0, rflow = 0; book[u] = true;
Next(i, u) {
int v = e[i].v; cur[u] = i;
if(!book[v] && dep[v] == dep[u] + 1 && e[i].w && (rflow = dfs(v, min(e[i].w, lim)))) {
flow += rflow, lim -= rflow, e[i].w -= rflow, e[i ^ 1].w += rflow;
if(!lim) break;
}
}
book[u] = false; return flow;
}
}
void add(int u, int v, int w) {
e[++tot].v = v, e[tot].w = w, e[tot].next = h[u], h[u] = tot;
e[++tot].v = u, e[tot].w = 0, e[tot].next = h[v], h[v] = tot;
}
int main () {
cin >> n;
rep(i, 1, n) cin >> a[i], d[a[i]] ^= 1, d[a[i] + 1] ^= 1;
PR :: sieve(M - 1);
s = cnt = 1;
rep(i, 1, M - 1) if(d[i]) a[++cnt] = i, ++ton[i & 1];
t = ++cnt;
rep(i, 2, cnt - 1) {
if(a[i] & 1) add(s, i, 1);
else add(i, t, 1);
}
rep(i, 2, cnt - 1) if(a[i] & 1) {
rep(j, 2, cnt - 1) if(!(a[j] & 1) && !(PR :: iprime[abs(a[j] - a[i])])) add(i, j, 1);
}
while (FL :: bfs(s, t)) ans += FL :: dfs(s, cnt);
if((ton[0] - ans) & 1) F = 1;
ans += 2 * ((ton[0] - ans) / 2 + (ton[1] - ans) / 2);
ans += F * 3;
printf("%d", ans);
return 0;
}

首先区间修改差分转单点是非常重要的,可以减少有效修改点数,方便于观察问题。

对于某个数能被质数 / 奇质数组成的问题,一定要敏锐地想到 哥德巴赫猜想

AT2689 [ARC080D] Prime Flip的更多相关文章

  1. [Arc080F]Prime Flip

    [Arc080F]Prime Flip Description 你有无限多的"给给全",编号为1,2,3,....开始时,第x1,x2,...,xN个"给给全" ...

  2. AT2689 Prime Flip

    传送门 这个题是真的巧妙 首先一个很巧妙的思路,差分 考虑假如\(a_i!=a_{i-1}\),则\(b_i=1\),否则\(b_i=0\) 这样一来,一个区间的翻转就变成了对于两个数的取反了 然后我 ...

  3. Prime Flip AtCoder - 2689

    发现我们每次区间取反,相邻位置的正反关系只有两个位置发生改变 我们定义bi为ai和ai-1的正反关系,即ai=ai-1时bi=0,否则bi=1,每次取反l~r,b[l]和b[r+1]会发生改变 容易发 ...

  4. 【arc080F】Prime Flip

    Portal --> arc080_f Solution ​  这题的话..差分套路题(算吗?反正就是想到差分就很好想了qwq) ​​  (但是问题就是我不会这种套路啊qwq题解原话是:&quo ...

  5. 【ARC080F】Prime Flip 差分+二分图匹配

    Description ​ 有无穷个硬币,初始有n个正面向上,其余均正面向下.  你每次可以选择一个奇质数p,并将连续p个硬币都翻转.  问最小操作次数使得所有硬币均正面向下. Input ​ 第一行 ...

  6. 【Atcoder】ARC 080 F - Prime Flip

    [算法]数论,二分图最大匹配 [题意]有无限张牌,给定n张面朝上的牌的坐标(N<=100),其它牌面朝下,每次操作可以选定一个>=3的素数p,并翻转连续p张牌,求最少操作次数使所有牌向下. ...

  7. [atARC080F]Prime Flip

    构造一个数组$b_{i}$(初始为0),对于操作$[l_{i},r_{i}]$,令$b_{l_{i}}$和$b_{r_{i}+1}$值异或1,表示$i$和$i-1$的差值发生改变,最终即要求若干个$b ...

  8. Java基础之写文件——从多个缓冲区写(GatheringWrite)

    控制台程序,使用单个写操作将数据从多个缓冲区按顺序传输到文件,这称为集中写(GatheringWrite)操作.这个功能的优势是能够避免在将信息写入到文件中之前将信息复制到单个缓冲区中.从每个缓冲区写 ...

  9. Atcoder 乱做

    最近感觉自己思维僵化,啥都不会做了-- ARC103 F Distance Sums 题意 给定第 \(i\) 个点到所有点的距离和 \(D_i\) ,要求构造一棵合法的树.满足第 \(i\) 个点到 ...

随机推荐

  1. Anaconda下载与安装

    目录 Anaconda下载与安装 开发环境搭建介绍 Anaconda优势 Anaconda安装 测试安装成功 安装好Anaconda界面 如何启动jupyter 启动后新建文件 执行第一个程序 文件的 ...

  2. CHARACTERIZING ADVERSARIAL SUBSPACES USING LOCAL INTRINSIC DIMENSIONALITY

    目录 概 主要内容 LID LID估计 算法 实验 1 2 3 4 5 Ma X, Li B, Wang Y, et al. Characterizing Adversarial Subspaces ...

  3. Unsupervised Feature Learning via Non-Parametric Instance Discrimination

    目录 概 主要内容 Wu Z., Xiong Y., Yu S. & Lin D. Unsupervised Feature Learning via Non-Parametric Insta ...

  4. Java Web程序设计作业目录(作业笔记)

    Java Web程序设计笔记 • [目录] 第1章 Web应用程序 >>> 1.1.3 使用 Eclipse 创建一个静态的登录页面 1.2.5 使用 IE 或Chrome等浏览器, ...

  5. Cube 技术解读 | Cube 小程序技术详解

    本文为<Cube 技术解读>系列第三篇文章,之前上线的<支付宝新一代动态化技术架构与选型综述>与<Cube卡片技术栈解读>欢迎大家回顾. 魔方卡片(Cube)已在「 ...

  6. [学习笔记] Oracle基础增删改查用法

    查询 select *|列名|表达式 from 表名 where 条件 order by 列名 select t.* from STUDENT.STUINFO t where t.stuname = ...

  7. react中使用immutable

    官方文档(https://immutable-js.github.io/immutable-js/docs/#/) 有人说 Immutable 可以给 React 应用带来数十倍的提升,也有人说 Im ...

  8. SQL高级优化系列

    目录 SQL高级优化系列(一)之MySQL优化 SQL高级优化系列(二)之MySQL架构 SQL高级优化系列(三)之存储引擎 SQL高级优化系列(四)之SQL优化 SQL高级优化系列(五)之执行计划 ...

  9. maven仓库策略

    当构建Maven项目时,首先检查pom.xml文件以确定依赖包的下载位置,执行顺序如下: 1.从本地资源库中查找并获得依赖包,如果没有,执行第2步. 2.从Maven默认中央仓库中查找并获得依赖包(h ...

  10. less 循环模拟sass的for循环效果

    // 输入框部分宽度 从10px到600px 相隔10像素 .generate-widths(600); .generate-widths(@n, @i: 10) when (@i =< @n) ...