ReplacingMergeTree:实现Clickhouse数据更新
摘要:Clickhouse作为一个OLAP数据库,它对事务的支持非常有限。本文主要介绍通过ReplacingMergeTree来实现Clickhouse数据的更新、删除。
本文分享自华为云社区《Clickhouse如何实现数据更新》,作者: 小霸王。
Clickhouse作为一个OLAP数据库,它对事务的支持非常有限。Clickhouse提供了MUTATION操作(通过ALTER TABLE语句)来实现数据的更新、删除,但这是一种“较重”的操作,它与标准SQL语法中的UPDATE、DELETE不同,是异步执行的,对于批量数据不频繁的更新或删除比较有用,可参考https://altinity.com/blog/2018/10/16/updates-in-clickhouse。除了MUTATION操作,Clickhouse还可以通过CollapsingMergeTree、VersionedCollapsingMergeTree、ReplacingMergeTree结合具体业务数据结构来实现数据的更新、删除,这三种方式都通过INSERT语句插入最新的数据,新数据会“抵消”或“替换”掉老数据,但是“抵消”或“替换”都是发生在数据文件后台Merge时,也就是说,在Merge之前,新数据和老数据会同时存在。因此,我们需要在查询时做一些处理,避免查询到老数据。Clickhouse官方文档提供了使用CollapsingMergeTree、VersionedCollapsingMergeTree的指导,https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/collapsingmergetree/。相比于CollapsingMergeTree、VersionedCollapsingMergeTree需要标记位字段、版本字段,用ReplacingMergeTree来实现数据的更新删除会更加方便,这里着重介绍一下如何用ReplacingMergeTree来实现数据的更新删除。
我们假设一个需要频繁数据更新的场景,如某市用户用电量的统计,我们知道,用户的用电量每分每秒都有可能发生变化,所以会涉及到数据频繁的更新。首先,创建一张表来记录某市所有用户的用电量。
CREATE TABLE IF NOT EXISTS default.PowerConsumption_local ON CLUSTER default_cluster
(
User_ID UInt64 COMMENT '用户ID',
Record_Time DateTime DEFAULT toDateTime(0) COMMENT '电量记录时间',
District_Code UInt8 COMMENT '用户所在行政区编码',
Address String COMMENT '用户地址',
Power UInt64 COMMENT '用电量',
Deleted BOOLEAN DEFAULT 0 COMMENT '数据是否被删除'
)
ENGINE = ReplicatedReplacingMergeTree('/clickhouse/tables/default.PowerConsumption_local/{shard}', '{replica}', Record_Time)
ORDER BY (User_ID, Address)
PARTITION BY District_Code;
CREATE TABLE default.PowerConsumption ON CLUSTER default_cluster AS default.PowerConsumption_local
ENGINE = Distributed(default_cluster, default, PowerConsumption_local, rand());
PowerConsumption_local为本地表,PowerConsumption为对应的分布式表。其中PowerConsumption_local使用ReplicatedReplacingMergeTree表引擎,第三个参数‘Record_Time’表示相同主键的多条数据,只会保留Record_Time最大的一条,我们正是利用ReplacingMergeTree的这一特性来实现数据的更新删除。因此,在选择主键时,我们需要确保主键唯一。这里我们选择(User_ID, Address)来作为主键,因为用户ID加上用户的地址可以确定唯一的一个电表,不会出现第二个相同的电表,所以对于某个电表多条数据,只会保留电量记录时间最新的一条。
然后我们向表中插入10条数据:
INSERT INTO default.PowerConsumption VALUES (0, '2021-10-30 12:00:00', 3, 'Yanta', rand64() % 1000 + 1, 0);
INSERT INTO default.PowerConsumption VALUES (1, '2021-10-30 12:10:00', 2, 'Beilin', rand64() % 1000 + 1, 0);
INSERT INTO default.PowerConsumption VALUES (2, '2021-10-30 12:15:00', 1, 'Weiyang', rand64() % 1000 + 1, 0);
INSERT INTO default.PowerConsumption VALUES (3, '2021-10-30 12:18:00', 1, 'Gaoxin', rand64() % 1000 + 1, 0);
INSERT INTO default.PowerConsumption VALUES (4, '2021-10-30 12:23:00', 2, 'Qujiang', rand64() % 1000 + 1, 0);
INSERT INTO default.PowerConsumption VALUES (5, '2021-10-30 12:43:00', 3, 'Baqiao', rand64() % 1000 + 1, 0);
INSERT INTO default.PowerConsumption VALUES (6, '2021-10-30 12:45:00', 1, 'Lianhu', rand64() % 1000 + 1, 0);
INSERT INTO default.PowerConsumption VALUES (7, '2021-10-30 12:46:00', 3, 'Changan', rand64() % 1000 + 1, 0);
INSERT INTO default.PowerConsumption VALUES (8, '2021-10-30 12:55:00', 1, 'Qianhan', rand64() % 1000 + 1, 0);
INSERT INTO default.PowerConsumption VALUES (9, '2021-10-30 12:57:00', 4, 'Fengdong', rand64() % 1000 + 1, 0);
表中数据如图所示:
假如现在我们要行政区编码为1的所有用户数据都需要更新,我们插入最新的数据:
INSERT INTO default.PowerConsumption VALUES (2, now(), 1, 'Weiyang', rand64() % 100 + 1, 0);
INSERT INTO default.PowerConsumption VALUES (3, now(), 1, 'Gaoxin', rand64() % 100 + 1, 0);
INSERT INTO default.PowerConsumption VALUES (6, now(), 1, 'Lianhu', rand64() % 100 + 1, 0);
INSERT INTO default.PowerConsumption VALUES (8, now(), 1, 'Qianhan', rand64() % 100 + 1, 0);
插入最新数据后,表中数据如图所示:
可以看到,此时新插入的数据与老数据同时存在于表中,因为后台数据文件还没有进行Merge,“替换”还没有发生,这时就需要对查询语句做一些处理来过滤掉老数据,函数argMax(a, b)可以按照b的最大值取a的值,所以通过如下查询语句就可以只获取到最新数据:
SELECT
User_ID,
max(Record_Time) AS R_Time,
District_Code,
Address,
argMax(Power, Record_Time) AS Power,
argMax(Deleted, Record_Time) AS Deleted
FROM default.PowerConsumption
GROUP BY
User_ID,
Address,
District_Code
HAVING Deleted = 0;
查询结果如下图:
为了更方便我们查询,这里可以创建一个视图:
CREATE VIEW PowerConsumption_view ON CLUSTER default_cluster AS
SELECT
User_ID,
max(Record_Time) AS R_Time,
District_Code,
Address,
argMax(Power, Record_Time) AS Power,
argMax(Deleted, Record_Time) AS Deleted
FROM default.PowerConsumption
GROUP BY
User_ID,
Address,
District_Code
HAVING Deleted = 0;
通过该视图,可以查询到最新的数据:
假如现在我们又需要删除用户ID为0的数据,我们需要插入一条User_ID字段为0,Deleted字段为1的数据:
INSERT INTO default.PowerConsumption VALUES (0, now(), 3, 'Yanta', null, 1);
查询视图,发现User_ID为0的数据已经查询不到了:
通过如上方法,我们可以实现Clickhouse数据的更新、删除,就好像在使用OLTP数据库一样,但我们应该清楚,实际上老数据真正的删除是在数据文件Merge时发生的,只有在Merge后,老数据才会真正物理意义上的删除掉。
ReplacingMergeTree:实现Clickhouse数据更新的更多相关文章
- ClickHouse(10)ClickHouse合并树MergeTree家族表引擎之ReplacingMergeTree详细解析
目录 建表语法 数据处理策略 资料分享 参考文章 MergeTree拥有主键,但是它的主键却没有唯一键的约束.这意味着即便多行数据的主键相同,它们还是能够被正常写入.在某些使用场合,用户并不希望数据表 ...
- clickhouse核心引擎MergeTree子引擎
在clickhouse使用过程中,针对数据量和查询场景,MergeTree是最常用也是较为合适的表引擎.针对特定的业务,MergeTree的子引擎可以针对不同的业务而定,但都基于MergeTree引擎 ...
- clickhouse入门到实战及面试
第一章. clickhouse入门 一.ClickHouse介绍 ClickHouse(开源)是一个面向列的数据库管理系统(DBMS),用于在线分析处理查询(OLAP). 关键词:开源.面向列.联机分 ...
- 彪悍开源的分析数据库-ClickHouse
https://zhuanlan.zhihu.com/p/22165241 今天介绍一个来自俄罗斯的凶猛彪悍的分析数据库:ClickHouse,它是今年6月开源,俄语社区为主,好酒不怕巷子深. 本文内 ...
- Clickhouse v18编译记录
简介 ClickHouse是"战斗民族"俄罗斯搜索巨头Yandex公司开源的一个极具"战斗力"的实时数据分析数据库,是面向 OLAP 的分布式列式DBMS,圈内 ...
- Linux系统:Centos7下搭建ClickHouse列式存储数据库
本文源码:GitHub·点这里 || GitEE·点这里 一.ClickHouse简介 1.基础简介 Yandex开源的数据分析的数据库,名字叫做ClickHouse,适合流式或批次入库的时序数据.C ...
- ClickHouse
ClickHouse 是俄罗斯的Yandex于2016年开源的列式存储数据库(DBMS),主要用于在线分析处理查询(OLAP),能够使用SQL查询实时生成分析数据报告 1 安装前的准备1.1 Cent ...
- Clickhouse单机部署以及从mysql增量同步数据
背景: 随着数据量的上升,OLAP一直是被讨论的话题,虽然druid,kylin能够解决OLAP问题,但是druid,kylin也是需要和hadoop全家桶一起用的,异常的笨重,再说我也搞不定,那只能 ...
- clickhouse数据库
https://www.jianshu.com/p/a5bf490247ea https://www.cnblogs.com/davygeek/p/8018292.html 开源分布式数据库 htt ...
随机推荐
- C# MVC 实现 ajax 跨域
dataup.js$(function() { $.ajax({ url: "http://localhost:1266/test/t", dat ...
- Jmeter系列(3)- 常用断言之响应断言
断言的作用 确定请求是有效还是无效的 添加断言 面板模块介绍 Apply to 作用:指定断言作用范围 Main sample and sub-sample:作用于主main sample和子sub- ...
- Typescript, ES6
* typescript 中文文档 https://www.tslang.cn/docs/home.html * ECMAScript 6 入门 http://es6.ruanyifeng.com/# ...
- python之jsonpath
json 官方文档:http://docs.python.org/library/json.html JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使 ...
- P6793-[SNOI2020]字符串【广义SAM,贪心】
正题 题目链接:https://www.luogu.com.cn/problem/P6793 题目大意 给出两个长度为\(n\)的字符串,取出他们所有长度为\(k\)的连续子串分别构成两个可重集合\( ...
- 解决联想R720双系统Ubuntu16.04的无线网卡开启问题及信号不稳定
问题一:1.问题描述笔记本型号:Lenovo r720笔记本(i5-7300hq,gtx1060 maxq 6g),默认装入Win10系统,然而当装入Ubuntu16.04双系统时,会出现无线网卡(型 ...
- Dart 中的final 和 const
Dart 常量和常量值 final 和 const 两个关键字用来定义常量,有什么区别呢? final 声明的是运行时常量,const声明的是编译时常量 const 可以声明常量值 举个例子: imp ...
- 从commons-beanutils反序列化到shiro无依赖的漏洞利用
目录 0 前言 1 环境 2 commons-beanutils反序列化链 2.1 TemplatesImple调用链 2.2 PriorityQueue调用链 2.3 BeanComparator ...
- golang []byte和string的高性能转换
golang []byte和string的高性能转换 在fasthttp的最佳实践中有这么一句话: Avoid conversion between []byte and string, since ...
- Lynis 漏洞扫描工具部署及效果展示
Lynis 漏洞扫描工具部署及效果展示 介绍 Lynis是一个安全审计工具,它可以在Linux,macOS和其他基于Unix的系统上运行.Lynis的主要重点是执行系统的运行状况检查,它还有助于检测漏 ...