hdu4479 (数学题)(算术基本定理)
题目大意
给定一个三元组\((x,y,z)\)的\(gcd\)和\(lcm\),求可能的三元组的数量是多少,其中三元组是的具有顺序的
其中\(gcd\)和\(lcm\)都是32位整数范围之内
由算术基本定理可以得知:
如果$k=gcd(m,n) \(则\) k_p=min(m_p,n_p)$
如果\(k=lcm(m,n)\)则\(k_p=max(m_p,n_p)\)
那么我们可以把每个质因数分开讨论,因为三元组是有序的,所以我们考虑每两个数成为gcd和lcm的,另一个数在\((p_gcd,p_lcm)\)之间,那么这种时候就是\(6×(r−l−1)\),然后考虑有两个点在端点的情况,因为是对称的,所以最终答案就是\(6×(r−l+1)+3+3=6×(r−l)\)
然后求解就可以
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 1e6+1e2;
int g,l;
map<int,int> mpg,mpl;
int pg[maxn],pl[maxn];
int t;
int tmp=0;
int tmp1=0;
void count(int x)
{
int n=x;
for (int i=2;i*i<=x;i++)
{
if (n%i==0)
{
pg[++tmp]=i;
}
while (n%i==0)
{
n/=i;
mpg[i]++;
}
}
if (n>1) mpg[n]=1;
pg[++tmp]=n;
}
void count1(int x)
{
int n=x;
for (int i=2;i*i<=x;i++)
{
if (n%i==0)
{
pl[++tmp1]=i;
}
while (n%i==0)
{
n/=i;
mpl[i]++;
}
}
if (n>1) mpl[n]=1;
pl[++tmp1]=n;
}
int ans;
int main()
{
cin>>t;
while (t--)
{
mpg.clear();
mpl.clear();
tmp=0;
tmp1=0;
g=read(),l=read();
count(g);
count1(l);
bool flag=true;
ans=1;
for (int i=1;i<=tmp;i++)
{
if (mpg[pg[i]]>mpl[pg[i]]) {
flag=false;
cout<<0<<endl;
}
}
if (!flag) continue;
for (int i=1;i<=tmp1;i++)
{
int cnt = mpl[pl[i]]-mpg[pl[i]];
if (cnt==0) ans=ans*1;
else {
ans=ans*cnt*6;
}
}
cout<<ans<<endl;
}
return 0;
}
hdu4479 (数学题)(算术基本定理)的更多相关文章
- Aladdin and the Flying Carpet LightOJ - 1341 (素数打表 + 算术基本定理)
题意: 就是求a的因数中大于b的有几对 解析: 先把素数打表 运用算术基本定理 求出a的所有因数的个数 然后减去小于b的因数的个数 代码如下: #include <iostream> #i ...
- LightOJ - 1341 Aladdin and the Flying Carpet (算术基本定理)
题意: 就是....求a的所有大于b的因子有多少对 算术基本定理求 所有因子 阿欧...偷张图. 注意范围 就好 ..... 解析: 在1 -1012的范围内求大于b的所有a的因子的对数(有几对) ...
- 51nod 1189 算术基本定理/组合数学
www.51nod.com/onlineJudge/questionCode.html#!problemId=1189 1189 阶乘分数 题目来源: Spoj 基准时间限制:1 秒 空间限制:131 ...
- Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)
Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...
- Aladdin and the Flying Carpet (LightOJ - 1341)【简单数论】【算术基本定理】【分解质因数】
Aladdin and the Flying Carpet (LightOJ - 1341)[简单数论][算术基本定理][分解质因数](未完成) 标签:入门讲座题解 数论 题目描述 It's said ...
- Sigma Function (LightOJ - 1336)【简单数论】【算术基本定理】【思维】
Sigma Function (LightOJ - 1336)[简单数论][算术基本定理][思维] 标签: 入门讲座题解 数论 题目描述 Sigma function is an interestin ...
- Pairs Forming LCM LightOJ - 1236 (算术基本定理)
题意: 就是求1-n中有多少对i 和 j 的最小公倍数为n (i <= j) 解析: 而这题,我们假设( a , b ) = n ,那么: n=pk11pk22⋯pkss, a=pd11pd2 ...
- LCM Cardinality UVA - 10892(算术基本定理)
这题就是 LightOJ - 1236 解析去看这个把https://www.cnblogs.com/WTSRUVF/p/9185140.html 贴代码了: #include <iostrea ...
- lightoj 1341 Aladdin and the Flying Carpet(算术基本定理)题解
题意:给一个矩形(非正方形)面积a和最小边长b,要求边长均大于b,求这样的矩形有几个 思路:先用到了之前学的质因数分解,还有一个新的公式: 然后我们可以先算出a的所有约数,因为只算约数个数面积重复,所 ...
随机推荐
- ELK数据迁移,ES快照备份迁移
通过curl命令或者kibana快照备份,恢复的方式进行数据迁移 环境介绍 之前创建的ELK 因为VPC环境的问题,需要对ELK从新部署,但是还需要保留现有的数据,于是便有了这篇文档. 10.0.20 ...
- 剑指offer(一)——二维数组中的查找
题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...
- Linux基础命令(基于CentOS7)
1.帮助相关命令 man 查看普通命令的帮助 --help 只能查看内置命令 info 查看一个命令的更多信息 type 查看是否为内置命令 2.关机重启 shutdown -h 关机 -r 重启 - ...
- Spring5(七)——AOP注解
一.AOP注解 1.介绍 上一节介绍了 AspectJ 框架如何实现 AOP,具体的实现方式是通过 xml 来进行配置的.xml 方式思路清晰,便于理解,但是书写过于麻烦.这一节介绍注解的方式来进行 ...
- [第一篇]——Docker 教程之Spring Cloud直播商城 b2b2c电子商务技术总结
Docker 教程 Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从 Apache2.0 协议开源. Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然 ...
- [第十八篇]——Docker 安装 Node.js之Spring Cloud大型企业分布式微服务云架构源码
Docker 安装 Node.js Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境,是一个让 JavaScript 运行在服务端的开发平台. 1.查看可用的 N ...
- HDFS基本命令
1.创建目录 hadoop dfs -mkdir /data hadoop dfs -mkdir -p /data/data1 创建多级目录 2.查看文件 hadoop dfs -ls / 3.上 ...
- 3.8学习总结——Android保存信息
为了保存软件的设置参数,Android平台为我们提供了一个SharedPreferences接口,它是一个轻量级的存储类,特别适合用于保存软件配置参数.使用SharedPreferences保存数据, ...
- POJ题目 1003Hangover(叠放纸牌)
POJ 1003 叠放纸牌 描述 您可以将多张纸牌悬在桌子上多远?如果您有一张卡,则可以创建一个最大长度为卡长的一半.(我们假设这些卡片必须垂直于桌子.)使用两张卡片,您可以使最上面的卡片悬垂在底部的 ...
- webpack 安装与卸载
全局安装(不推荐): npm install webpack webpack-cli -g 安装好后打印版本: webpack -v webpack-cli -v 卸载全局 npm uninstall ...