《Self-Attention Generative Adversarial Networks》里的注意力计算
前天看了 criss-cross 里的注意力模型 仔细理解了 在: https://www.cnblogs.com/yjphhw/p/10750797.html
今天又看了一个注意力模型 《Self-Attention Generative Adversarial Networks》 https://arxiv.org/pdf/1805.08318v1.pdf
里边关键的还是注意力机制,又花了一个小时理解了下,感觉这种方式能够带来另一种视野的扩大,其中cnn是通过不断卷积扩大视野。
而这种注意力模型直接通过内积(矩阵的乘法)和 线性组合来直接获取全局信息,作者们都认为是注意力! 是否有其他含义还需要进一步理解。
这篇文章里关键就是注意力的产生:
这里边的操作 圆圈里的差 就是值得矩阵乘法。 整个这种注意力机制的论文多起来, 经典的style tranfer的论文也是用类似的方法计算风格损失的 格莱姆矩阵
下面就从输入x开始, x是个 c*w*h的 特征图 论文里写 c*n 是因为把w*h 展开了 。
然后三路 1*1卷积,没问题,这个操作可以先不展开。
这里我们用不展开的方式 先描述 f(x)和g(x)做 c`*1*1的卷积, h(x)是 做 c*1*1的卷积
做完后 对f(x),g(x) 在空间维度上拉开 w*h 拉开为 n=w*h
黄色的就是 c`*n 绿色也是 c`*n 大小的矩阵
对黄色的转置 就是 n*c` 然后 和绿色的就能做矩阵乘法
得到一个 n*n的矩阵。下边为了归一化参数,在列的方向上做softmax。得到了一个n*n的注意力矩阵,为什么在列方向上归一化,这是因为为了下一步和h(x)的特征图相乘
h(x)是经过 c*1*1的卷积操作,对输入x进行了一次变换的来的,同样对其拉开就成了一个 c*n的矩阵
刚才得到的注意力矩阵式n*n的,并且在列上归一化了, 所以 h(x)* attention 得到一个 (c*n) *(n*n)= c*n 大小的矩阵。
然后恢复 c*n 到 c*w*h就可以。
这样就可以看到这完全就是对每个位置和所有位置进行加权,一下子具有全局感受视野,而且每个位置的权值不同。
这可以细细体会下,这样的操作到底代表了什么。
卷积是扩大视野的方法,这种操作直接一步到位获取了全局视野。
和criss-cross的方法是在通道上,这个直接是在通道内。不太确定。
之前还有squeeze 和 excitation的注意力方法
如何结合起来,是否可以用在分类上,提升分类精度? 值得思考。
《Self-Attention Generative Adversarial Networks》里的注意力计算的更多相关文章
- AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks 笔记
AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks 笔记 这 ...
- SAGAN:Self-Attention Generative Adversarial Networks - 1 - 论文学习
Abstract 在这篇论文中,我们提出了自注意生成对抗网络(SAGAN),它是用于图像生成任务的允许注意力驱动的.长距离依赖的建模.传统的卷积GANs只根据低分辨率图上的空间局部点生成高分辨率细节. ...
- Generative Adversarial Networks overview(2)
Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步 ...
- Generative Adversarial Networks overview(1)
Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步 ...
- GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds
GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds 2019 ...
- StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 本文将利 ...
- 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks
Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...
- Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection
Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11 19:47:46 CVPR 20 ...
- (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!
Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...
随机推荐
- MinHook测试分析02 (x64)
在X64模式中,存在的问题是JMP指令和整个地址空间相比仅仅覆盖了很窄的范围.因此引入一个中继函数(Relay Function)来实现对64位Detour函数地址的跳转. 在hook的分析之前,先谈 ...
- servlet异步处理机制
Servlet 3.0 之前,一个普通 Servlet 的主要工作流程大致如下:首先,Servlet 接收到请求之后,可能需要对请求携带的数据进行一些预处理:接着,调用业务接口的某些方法,以完成业务处 ...
- Ubuntu 16.04 上安装 MySQL 5.7 教程
介绍 MySQL 是一种开源数据库管理系统,通常作为流行的LAMP(Linux,Apache,MySQL,PHP / Python / Perl)堆栈的一部分安装.它使用关系数据库和SQL(结构化查询 ...
- 20165214 2018-2019-2 《网络对抗技术》Exp4 恶意代码分析 Week6
<网络对抗技术>Exp3 免杀原理与实践 Week5 一.实验目标与内容 1.实践目标 1.1是监控你自己系统的运行状态,看有没有可疑的程序在运行. 1.2是分析一个恶意软件,就分析Exp ...
- [RESTful] DHC Client
安装Chrome的DHC插件, 进入DHC Client谷歌插件网页. 安装到Chrome浏览器: 点击Chrome设置 点击扩展程序 把刚刚下载的文件解压缩 把 .crx 后缀的文件直接拖入Chro ...
- 新手学习之浅析一下c/c++中的指针
一.我们先来回忆一下指针的概念吧,方便下面的介绍 指针是存放地址值的变量或者常量.例如:int a=1;&a就表示指针常量(“&”表示取地址运算符,也即引用).int *b,b表示的是 ...
- pandas 常用函数
- Java编程思想 - 第11章 持有对象
· 大量笔记存放在Github Java文件中,请移步查看:https://github.com/iGuure/AndroidCodeHub/tree/master/Java%20pratice/Th ...
- JS Math方法
- 字符串与NUll的拼接问题
今天做项目,浏览器向后台传值的时候,碰到一个问题,声明变量的时候为null时,首次加载会报错.但是初始化一次后,就正常传值了,摸索了半天,终于找到问题所在.在此记录一下,谨记. 现在说说情况,我在JS ...