这题把我写吐了。。。代码水平还是太弱鸡了啊。。。

这题就是先给你一些点,以及点权。然后给你一些向边构成一颗树,树的根节点是1。

然后给定三个操作

第一个是把指定节点的权值+W

第二个是把指定节点X为根(包括自己)的所有点权+W

第三个是求出指定节点到根节点的点权之和

嗯没错,听了大佬讲,肯定跑不了是DFS序,那么是用哪种呢???是N的还是2N的??

我们思考一个问题,如果是N的,能表示什么遍历完成儿子节点的时间吗???显然不能

但是。。。2n的是可以的,因为节点DFS出现两次中间的节点都是他的儿子。

如果知道DFS序列,上面1.2操作显然是不足为虑的。。。但是3操作呢???我们如果单纯求和,那么有些没有走过的点会计算两次,

不妨这样考虑:我们写出DFS序

如果求5到根节点,我们会求出12(33)5,每个数前后的位置,我们可以用一个数组存储(这非常简单),我们能不能想办法消去这个影响呢???

这是没问题的,我来思考一下,如果我依照某个DFS序,到底起点,那么DFS序中出现两次的一定是没用的,我们统计内部内部只出现一次数的个数,这个些个数就是操作3在这个区间的效果。

但是还有一个问题,我们如果抵消了,那么是不是GG了?我以后访问这个数岂不是也完蛋了?但题目要求跟新的整个子树,我如果这样抵消。。。会对以后造成影响吗??

其实是不会的,因为我们是把加的值放在了这个数第一次出现的地方,把减的值放在了第二次出现的地方。我们实际上对后面不会有影响,如果要访问节点x以及其子树,一定不会访问到第二个节点x出现的位置。

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
#define LL long long
using namespace std;
const int maxx = 1e6+;
struct node{
int l,r;
LL sum,laze;
}tree[maxx<<];
struct snode{
int pre,bac;
}id[maxx];
vector<int>G[maxx];
int vis[maxx];
int st[maxx];
int num[maxx],a[maxx],b[maxx],c[maxx];
int n,m;
int cnt;
int num_s;
inline int L(int x){return x<<;};
inline int R(int x){return x<<|;};
inline int MID(int l,int r){return (l+r)>>;};
void push_down(int root){
if (tree[root].laze){
tree[L(root)].laze+=tree[root].laze;
tree[R(root)].laze+=tree[root].laze;
tree[L(root)].sum+=(LL)(num[tree[L(root)].r]-num[tree[L(root)].l-])*tree[root].laze;
tree[R(root)].sum+=(LL)(num[tree[R(root)].r]-num[tree[R(root)].l-])*tree[root].laze;
tree[root].laze=;
}
}
void buildtree(int root,int l,int r){
tree[root].l=l;
tree[root].r=r;
tree[root].laze=;
tree[root].sum=;
if (l==r){
tree[root].sum=(LL)(num[l]-num[l-])*a[st[l]];
return;
}
int mid=MID(l,r);
buildtree(L(root),l,mid);
buildtree(R(root),mid+,r);
tree[root].sum=tree[L(root)].sum+tree[R(root)].sum;
}
void update(int root,int ul,int ur,int w){
int l=tree[root].l;
int r=tree[root].r;
if (ul<=l && r<=ur){
tree[root].sum+=(LL)(num[r]-num[l-])*w;
tree[root].laze+=w;
return;
}
push_down(root);
int mid=MID(l,r);
if (ur<=mid){
update(L(root),ul,ur,w);
}else if(ul>mid){
update(R(root),ul,ur,w);
}else{
update(L(root),ul,mid,w);
update(R(root),mid+,ur,w);
}
tree[root].sum=tree[L(root)].sum+tree[R(root)].sum;
}
LL query(int root,int ql,int qr){
int l=tree[root].l;
int r=tree[root].r;
int mid;
LL sum=;
if (ql<=l && r<=qr){
return tree[root].sum;
}
mid=MID(l,r);
push_down(root);
if (qr<=mid){
sum+=query(L(root),ql,qr);
}else if (ql>mid){
sum+=query(R(root),ql,qr);
}else {
sum+=query(L(root),ql,mid);
sum+=query(R(root),mid+,qr);
}
return sum;
}
void dfs(int x)
{
vis[x]=;
cnt++;
num[cnt]=;
st[cnt]=x;
c[x]=cnt;
id[x].pre=cnt;
for (int i=;i<G[x].size();i++)
{
if(!vis[G[x][i]]){
dfs(G[x][i]);
}
}
cnt++;
id[x].bac=cnt;
st[cnt]=x;
num[cnt]=-;
}
int main()
{
int u,v,op,tmp1,tmp2;
while(~scanf("%d%d",&n,&m))
{
for (int i=;i<=n;i++){
G[i].clear();
}
cnt=;
num_s=;
memset(vis,,sizeof(vis));
memset(tree,,sizeof(tree));
for (int i=;i<=n;i++){
scanf("%d",&a[i]);
}
for (int i=; i<n; i++)
{
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs();
num[]=;
for (int i=;i<=*n;i++){
num[i]=num[i-]+num[i];
}
buildtree(,,*n);
while(m--){
scanf("%d",&op);
if (op==){
scanf("%d%d",&tmp1,&tmp2);
update(,id[tmp1].pre,id[tmp1].pre,tmp2);
update(,id[tmp1].bac,id[tmp1].bac,tmp2);
}else if (op==){
scanf("%d%d",&tmp1,&tmp2);
update(,id[tmp1].pre,id[tmp1].bac,tmp2);
}else {
scanf("%d",&tmp1);
printf("%lld\n",query(,,id[tmp1].pre));;
}
}
}
return ;
}
/* */

BZOJ4034: [HAOI2015]树上操作的更多相关文章

  1. bzoj千题计划242:bzoj4034: [HAOI2015]树上操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=4034 dfs序,树链剖分 #include<cstdio> #include<io ...

  2. bzoj4034[HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6163  Solved: 2025[Submit][Stat ...

  3. bzoj4034: [HAOI2015]树上操作(树剖)

    4034: [HAOI2015]树上操作 题目:传送门 题解: 树剖裸题: 麻烦一点的就只有子树修改(其实一点也不),因为子树编号连续啊,直接改段(记录编号最小和最大) 开个long long 水模版 ...

  4. BZOJ4034 [HAOI2015]树上操作 树链剖分

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4034 题意概括 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三 ...

  5. BZOJ4034[HAOI2015]树上操作——树链剖分+线段树

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都 ...

  6. [luogu3178][bzoj4034][HAOI2015]树上操作

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...

  7. [bzoj4034][HAOI2015]树上操作——树状数组+dfs序

    Brief Description 您需要设计一种数据结构支持以下操作: 把某个节点 x 的点权增加 a . 把某个节点 x 为根的子树中所有点的点权都增加 a . 询问某个节点 x 到根的路径中所有 ...

  8. BZOJ4034 [HAOI2015]树上操作+DFS序+线段树

    参考:https://www.cnblogs.com/liyinggang/p/5965981.html 题意:是一个数据结构题,树上的,用dfs序,变成线性的: 思路:对于每一个节点x,记录其DFS ...

  9. bzoj4034 [HAOI2015]树上操作——树链剖分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4034 树剖裸题: 一定要注意 long long !!! update 的时候别忘了 pus ...

随机推荐

  1. 【憩园】C#并发编程之概述

    写在前面 并发编程一直都存在,只不过过去的很长时间里,比较难以实现,随着互联网的发展,人口红利的释放,更加友好的支持并发编程已经成了主流编程语言的标配,而对于软件开发人员来说,没有玩过并发编程都会有点 ...

  2. SpringCloud系列——Eureka 服务注册与发现

    前言 Eureka是一种基于REST(具像状态传输)的服务,主要用于AWS云中定位服务,以实现中间层服务器的负载平衡和故障转移.本文记录一个简单的服务注册与发现实例. GitHub地址:https:/ ...

  3. 第36章 扩展授权 - Identity Server 4 中文文档(v1.0.0)

    OAuth 2.0为令牌端点定义了标准授权类型,例如password,authorization_code和refresh_token.扩展授权是一种添加对非标准令牌颁发方案(如令牌转换,委派或自定义 ...

  4. XML记一次带命名空间的xml读取

    public static void ReadXML(string xmlUrl) { //判断文件是否存在 if (!File.Exists(xmlUrl)) { Console.WriteLine ...

  5. Mybatis框架基础支持层——反射工具箱之泛型解析工具TypeParameterResolver(4)

    简介:TypeParameterResolver是一个工具类,提供一系列的静态方法,去解析类中的字段.方法返回值.方法参数的类型. 在正式介绍TypeParameterResolver之前,先介绍一个 ...

  6. 如何搭建一个VUE项目

    搭建环境 搭建node环境 下载 1.进入node.js官方网站下载页,点击下图中框出位置,进行下载即可,当前版本为8.9.4,下载网址为:https://nodejs.org/zh-cn/downl ...

  7. Android下获取FPS的几种方法

    FPS(Frames Per Second)是关乎Android用户体验最为重要的指标之一,而在VR中更是如此.为了评估VR系统.VR SDK及Unity应用的性能,通常会实时获取FPS并将其显示出来 ...

  8. 测者的性能测试手册:快速安装LoadRunner Linux上的Generator

    安装和初始化 安装包 上传Linux.zip(LoadRunner Generator for Linux.zip,后台回复loadrunner获取下载地址),然后通过如下命令: unzip Linu ...

  9. Prometheus Operator - 每天5分钟玩转 Docker 容器技术(177)

    前面我们介绍了 Kubernetes 的两种监控方案 Weave Scope 和 Heapster,它们主要的监控对象是 Node 和 Pod.这些数据对 Kubernetes 运维人员是必须的,但还 ...

  10. SQL Server -- 回忆笔记(五):T-SQL编程,系统变量,事务,游标,触发器

    SQL Server -- 回忆笔记(五):T-SQL编程,系统变量,事务,游标,触发器 1. T-SQL编程 (1)声明变量 declare @age int (2)为变量赋值 (3)while循环 ...