一、简介

二、opencv中的SURF算法接口

三、特征点匹配方法

四、代码

1.特征点提取

#include "opencv2/opencv.hpp"
#include <opencv2/nonfree/nonfree.hpp>
#include <vector>
#include<iostream>
using namespace std;
using namespace cv; void main()
{
Mat srcImg1 = imread("E://1.jpg");
Mat srcImg2 = imread("E://2.jpg");
//定义SURF特征检测类对象
SurfFeatureDetector surfDetector();//SIFT有默认值,SURF没有默认值,需要赋初值 hessianThreshold
//定义KeyPoint变量
vector<KeyPoint>keyPoints1;
vector<KeyPoint>keyPoints2;
//特征点检测
surfDetector.detect(srcImg1, keyPoints1);
surfDetector.detect(srcImg2, keyPoints2);
//绘制特征点(关键点)
Mat feature_pic1, feature_pic2;
drawKeypoints(srcImg1, keyPoints1, feature_pic1, Scalar(,,));
//drawKeypoints(srcImg2, keyPoints2, feature_pic2, Scalar::all(-1));
//drawKeypoints(srcImg1, keyPoints1, feature_pic1, Scalar::all(-1), DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
drawKeypoints(srcImg2, keyPoints2, feature_pic2, Scalar::all(-), DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
//显示原图
imshow("src1", srcImg1);
imshow("src2", srcImg2);
//显示结果
imshow("feature1", feature_pic1);
imshow("feature2", feature_pic2); waitKey();
}

2.暴力匹配(尽量避免使用“nth_element前多少个”筛选)

#include "opencv2/opencv.hpp"
#include <opencv2/nonfree/nonfree.hpp>
#include <opencv2/legacy/legacy.hpp>
#include <vector>
#include<iostream>
using namespace std;
using namespace cv; void main()
{
Mat srcImg1 = imread("E://11.jpg");
Mat srcImg2 = imread("E://22.jpg");
//定义SURF特征检测类对象
SurfFeatureDetector surfDetector(); //HessianThreshold //定义KeyPoint变量
vector<KeyPoint>keyPoints1;
vector<KeyPoint>keyPoints2;
//特征点检测
surfDetector.detect(srcImg1, keyPoints1);
surfDetector.detect(srcImg2, keyPoints2);
//绘制特征点(关键点)
Mat feature_pic1, feature_pic2;
drawKeypoints(srcImg1, keyPoints1, feature_pic1, Scalar::all(-));
drawKeypoints(srcImg2, keyPoints2, feature_pic2, Scalar::all(-));
//显示原图
imshow("src1", srcImg1);
imshow("src2", srcImg2);
//显示结果
imshow("feature1", feature_pic1);
imshow("feature2", feature_pic2); //计算特征点描述符 / 特征向量提取
SurfDescriptorExtractor descriptor;
Mat description1;
descriptor.compute(srcImg1, keyPoints1, description1);
Mat description2;
descriptor.compute(srcImg2, keyPoints2, description2);
cout<<description1.cols<<endl;
cout<<description1.rows<<endl; //进行BFMatch暴力匹配
BruteForceMatcher<L2<float>>matcher; //实例化暴力匹配器
vector<DMatch>matches; //定义匹配结果变量
matcher.match(description1, description2, matches); //实现描述符之间的匹配 //计算向量距离的最大值与最小值
double max_dist=, min_dist=;
for(int i=; i<description1.rows; i++)
{
if(matches.at(i).distance > max_dist)
max_dist = matches[i].distance;
if(matches.at(i).distance < min_dist)
min_dist = matches[i].distance;
}
cout<<"min_distance="<<min_dist<<endl;
cout<<"max_distance="<<max_dist<<endl; //匹配结果筛选
vector<DMatch>good_matches;
for(int i=; i<matches.size(); i++)
{
if(matches[i].distance < *min_dist)
good_matches.push_back(matches[i]);
} Mat result;
//drawMatches(srcImg1, keyPoints1, srcImg2, keyPoints2, matches, result, Scalar::all(-1), Scalar::all(-1));
drawMatches(srcImg1, keyPoints1, srcImg2, keyPoints2, good_matches, result, Scalar(, , ), Scalar::all(-));
imshow("Match_Result", result); waitKey();
}

因为surf检测到的角点比较少,所以不适合做小目标匹配。

同样代码,使用sift作对比

3.FlannBasedMatcher匹配

   //BruteForceMatcher<L2<float>>matcher;    //实例化暴力匹配器
FlannBasedMatcher matcher; //实例化FLANN匹配器
vector<DMatch>matches; //定义匹配结果变量
matcher.match(description1, description2, matches); //实现描述符之间的匹配

其余代码相同

opencv学习之路(35)、SURF特征点提取与匹配(三)的更多相关文章

  1. OpenCV成长之路(9):特征点检测与图像匹配

    特征点又称兴趣点.关键点,它是在图像中突出且具有代表意义的一些点,通过这些点我们可以用来识别图像.进行图像配准.进行3D重建等.本文主要介绍OpenCV中几种定位与表示关键点的函数. 一.Harris ...

  2. Opencv学习之路—Opencv下基于HOG特征的KNN算法分类训练

    在计算机视觉研究当中,HOG算法和LBP算法算是基础算法,但是却十分重要.后期很多图像特征提取的算法都是基于HOG和LBP,所以了解和掌握HOG,是学习计算机视觉的前提和基础. HOG算法的原理很多资 ...

  3. opencv学习之路(34)、SIFT特征匹配(二)

    一.特征匹配简介 二.暴力匹配 1.nth_element筛选 #include "opencv2/opencv.hpp" #include <opencv2/nonfree ...

  4. opencv学习之路(33)、SIFT特征点提取(一)

    一.简介 二.OpenCV中的SIFT算法接口 #include "opencv2/opencv.hpp" #include <opencv2/nonfree/nonfree ...

  5. opencv学习之路(19)、直方图

    一.概述 二.一维灰度直方图 #include "opencv2/opencv.hpp" #include<iostream> using namespace cv; ...

  6. opencv学习之路(41)、人脸识别

    一.人脸检测并采集个人图像 //take_photo.cpp #include<opencv2/opencv.hpp> using namespace cv; using namespac ...

  7. opencv学习之路(40)、人脸识别算法——EigenFace、FisherFace、LBPH

    一.人脸识别算法之特征脸方法(Eigenface) 1.原理介绍及数据收集 特征脸方法主要是基于PCA降维实现. 详细介绍和主要思想可以参考 http://blog.csdn.net/u0100066 ...

  8. opencv学习之路(20)、直方图应用

    一.直方图均衡化--equalizeHist() #include "opencv2/opencv.hpp" using namespace cv; void main() { 6 ...

  9. opencv学习之路(18)、霍夫变换

    一.简介 在图像处理和计算机视觉领域中,如何从当前的图像中提取所需要的特征信息是图像识别的关键所在.在许多应用场合中需要快速准确地检测出直线或者圆.其中一种非常有效的解决问题的方法是霍夫(Hough) ...

随机推荐

  1. eclipese pyDEV安装----可以直接运行python文件

    重点: 1.Eclipse中手动安装pydev插件 2.开始写代码 1.下载匹配eclipse的pyDev版本: https://sourceforge.net/projects/pydev/file ...

  2. VUE组件间数据方法的传递,初步了解

    父组件的数据传递到子组件: 子组件:(其中fMsg是要从父组件传递过来的数据,注意fMsg要在子组件props里先定义) 父组件:(使用v-bind,将自身数据绑定给中转属性fMsg,从而通过 子组件 ...

  3. JavaScript关于sha1加密

    function encodeUTF8(s) { var i, r = [], c, x; for (i = 0; i < s.length; i++) if ((c = s.charCodeA ...

  4. python 数据分析算法(决策树)

    决策树基于时间的各个判断条件,由各个节点组成,类似一颗树从树的顶端,然后分支,再分支,每个节点由响的因素组成 决策树有两个阶段,构造和剪枝 构造: 构造的过程就是选择什么属性作为节点构造,通常有三种节 ...

  5. NOIP2018 游记 QAQ

    写在前面: 本人初三党.NOIP前两个月不好好停课搞信竞愣是要搞文化课.于是,期中考与NOIP一起凉凉[微笑] 本人写的第一篇NOIP游记,各位大佬们随便看一看就好 Day -n 初赛71,竟然跟wx ...

  6. 使用vue+elementUI+springboot创建基础后台增删改查的管理页面--(1)

    目前这家公司前端用的是vue框架,由于在之前的公司很少涉及到前端内容,对其的了解也只是会使用js和jquery,所以..慢慢来吧. 在此之前需要先了解vue的大致语法和规则,可先前往官方文档进行学习h ...

  7. 浅析对spring中IOC的理解

    学习过Spring框架的人一定都会听过Spring的IoC(控制反转) .DI(依赖注入)这两个概念,对于初学Spring的人来说,总觉得IoC .DI这两个概念是模糊不清的,是很难理解的,今天和大家 ...

  8. ios sdk 配置路径

    /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport command+shift + ...

  9. 测试客户端连接12c ASM实例

    环境:Oracle 12.2.0.1 RAC 背景:用户反映12c ASM创建的用户具备sysasm权限,但无法在客户端连接到ASM实例,且没有报错. 1.ASM实例创建用户赋予sysasm权限 2. ...

  10. Oracle游标介绍

    Oracle游标使用详解: 游标: 用来查询数据库,获取记录集合(结果集)的指针,我们所说的游标通常是指显式游标,因此从现在起没有特别指明的情况,我们所说的游标都是指显式游标.要在程序中使用游标,必须 ...