求 sigma i由0-k C(n,i)

利用Lucas定理+整除分块将C(n/p,i/p)利用i/p分块,得到k/p-1个整块(p-1)和一个小块(k%p)

最后得到式子 F(n,k)=F(n/p,k/p-1)*F(n%p,p-1)+C(n/p,k/p)*F(n%p,k%p);

写代码时将F编写成类似与Lucas的递归程序

F(int n,int m)   if(k<0) return 0; if(n==0&&k==0) return 1;

Lucas             if(m==0) return 1; if(n==m) return 1;if(n<m) return 0;

#include<bits/stdc++.h>
#define int long long
#define rep(i,x,y) for(register int i=x;i<=y;i++)
using namespace std;
const int N=;
const int p=;
inline int read(){
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+(ch^);ch=getchar();}
return x*f;}int c[N][N],f[N][N];
inline void init(){
rep(i,,) c[i][]=;
rep(i,,)rep(j,,i) c[i][j]=(c[i-][j]+c[i-][j-])%p;
rep(i,,) f[i][]=;
rep(i,,)rep(j,,) f[i][j]=(f[i][j-]+c[i][j])%;}
inline int Lucas(int n,int m){
if(!m) return ;
if(n==m) return ;
if(n<m) return ;
return c[n%p][m%p]*Lucas(n/p,m/p)%p;}
inline int F(int n,int k){
if(k<) return ;
if(n==||k==) return ;
if(n<p&&k<p) return f[n][k];
return (F(n/p,k/p-)*f[n%p][p-]%p+Lucas(n/p,k/p)*f[n%p][k%p]%p)%p;}
signed main(){init();
int T=read();while(T--){
int n=read(),k=read();
printf("%lld\n",F(n,k));}
return ;}

完结撒花

luogu 4345 Lucas的变形应用的更多相关文章

  1. Luogu 4345 [SHOI2015]超能粒子炮·改

    BZOJ4591 并不会写的组合数学. 我们设$f(n, k) = \sum_{i= 0}^{k}\binom{n}{i}$,那么每一个询问要求的就是$f(n, k)$. 发现$f(i, j)$其实可 ...

  2. 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)

    [模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...

  3. luogu 2480 古代猪文 数论合集(CRT+Lucas+qpow+逆元)

    一句话题意:G 的 sigma d|n  C(n d) 次幂  mod 999911659 (我好辣鸡呀还是不会mathjax) 分析: 1.利用欧拉定理简化模运算 ,将上方幂设为x,则x=原式mod ...

  4. [luogu P2633] Count on a tree

    [luogu P2633] Count on a tree 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点 ...

  5. luogu P2480 [SDOI2010]古代猪文

    M_sea:这道题你分析完后就是一堆板子 废话 理解完题意后,我们要求的东西是\(G^s(s=\sum_{d|n} \binom{n}{d})\) 但是这个指数\(s\)算出来非常大,,, 我们可以利 ...

  6. [luogu P2294] [HNOI2005]狡猾的商人

    [luogu P2294] [HNOI2005]狡猾的商人 题目描述 输入输出格式 输入格式: 从文件input.txt中读入数据,文件第一行为一个正整数w,其中w < 100,表示有w组数据, ...

  7. 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

    数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...

  8. Lucas–Kanade光流算法学习

    Lucas–Kanade光流算法是一种两帧差分的光流估计算法.它由Bruce D. Lucas 和 Takeo Kanade提出.         光流(Optical flow or optic f ...

  9. 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...

随机推荐

  1. 【English EMail】Compensation Planning Memo

    Data Foundation  数据基础 [faʊnˈdeʃən] Interesting newsletter for data foundation practice. Annual Code ...

  2. maven-assembly-plugin打包可执行的jar包

    pom.xml添加 <build> <plugins> <plugin> <artifactId>maven-assembly-plugin</a ...

  3. ElasticSearch(七):Java操作elasticsearch基于smartcn中文分词查询

    package com.gxy.ESChap01; import java.net.InetAddress; import org.elasticsearch.action.search.Search ...

  4. web开发-Django博客系统

    项目界面图片预览 项目代码github地址 项目完整流程 项目流程: 1 搞清楚需求(产品经理) (1) 基于用户认证组件和Ajax实现登录验证(图片验证码) (2) 基于forms组件和Ajax实现 ...

  5. 机器人行业中我们常说的roll、yaw、pitch是什么?

    坐标系建立: 载体坐标系与载体坐标系的关系是三个Euler角:yaw,pitch,roll,反应了载体相对基准面的姿态. pitch是围绕X轴旋转,也叫做俯仰角.当X轴的正半轴位于过坐标原点的水平面之 ...

  6. SpringCloud(1)服务注册与发现Eureka

    1.创建1个空白的工程 2.创建2个model工程 一个module(即SpringBoot)工程作为服务注册中心,即Eureka Server,另一个作为Eureka Client. Eureka ...

  7. 即将发布的 ASP.NET Core 2.2 会有哪些新玩意儿?

    今年 6 月份的时候时候 .NET 团队就在 GitHub 公布了 ASP.NET Core 2.2 版本的 Roadmap(文末有链接),而前两天 ASP.NET Core 2.2 预览版 2 已经 ...

  8. python 通过 http、dns、icmp判断网络状态

    #http使用requests发包bs4解析,dns.icmp 使用scapy发包import time import threading import requests,bs4 from scapy ...

  9. 其他综合-fdisk一键分区操作-无需脚本

    fdisk一键操作分区-无需脚本(根据自己的实际环境操作) 为了让在系统里能够显示新添加的硬盘已知有两种操作方法 : 1.重启 2.输入echo "- - -" > /sys ...

  10. Batch Normalization原理

    Batch Normalization导读 博客转载自:https://blog.csdn.net/malefactor/article/details/51476961 作者: 张俊林 为什么深度神 ...