SQL Server - 四种排序, ROW_NUMBER() /RANK() /DENSE_RANK() /ntile() over()
>>>>英文版 (更简洁易懂)<<<<
转载自:https://dzone.com/articles/difference-between-rownumber
One of the most obvious and useful set of window functions are ranking functions where rows from your result set are ranked according to a certain scheme. There are three ranking functions:
ROW_NUMBER()
RANK()
DENSE_RANK()
The difference is easy to remember. For the examples, let’s assume we have this table (using PostgreSQL syntax):
CREATE TABLE t(v) AS
SELECT * FROM (
VALUES('a'),('a'),('a'),('b'),
('c'),('c'),('d'),('e')
) t(v)
ROW_NUMBER()
… assigns unique numbers to each row within the PARTITION
given the ORDER BY
clause. So you’d get:
SELECT v, ROW_NUMBER() OVER()
FROM t
Note that some SQL dialects (e.g. SQL Server) require an explicit ORDER BY
clause in the OVER()
clause:
SELECT v, ROW_NUMBER() OVER(ORDER BY v)
FROM t
The above query returns:
RANK()
… behaves like ROW_NUMBER()
, except that “equal” rows are ranked the same. If we substitute RANK()
into our previous query:
SELECT v, RANK() OVER(ORDER BY v)
FROM t
… then the result we’re getting is this:
As you can see, much like in a sports ranking, we have gaps between the different ranks. We can avoid those gaps by using
DENSE_RANK()
Trivially, DENSE_RANK()
is a rank with no gaps, i.e. it is “dense”. We can write:
SELECT v, DENSE_RANK() OVER(ORDER BY v)
FROM t
… to obtain
One interesting aspect of DENSE_RANK()
is the fact that it “behaves like” ROW_NUMBER()
when we add the DISTINCT
keyword.
SELECT DISTINCT v, DENSE_RANK() OVER(ORDER BY v)
FROM t
… to obtain
In fact, ROW_NUMBER()
prevents you from using DISTINCT
, because ROW_NUMBER()
generates unique values across the partition beforeDISTINCT
is applied:
SELECT DISTINCT v, ROW_NUMBER() OVER(ORDER BY v)
FROM t
ORDER BY 1, 2
DISTINCT
has no effect:
Putting it all together
A good way to understand the three ranking functions is to see them all in action side-by-side. Run this query
SELECT
v,
ROW_NUMBER() OVER(ORDER BY v),
RANK() OVER(ORDER BY v),
DENSE_RANK() OVER(ORDER BY v)
FROM t
ORDER BY 1, 2
… to obtain:
Note that unfortunately, the WINDOW
clause is not supported in all databases.
>>>>中文版<<<<
转载自:https://www.cnblogs.com/SunnyZhu/p/5762898.html
SqlServer的四种排序,当场写了几句Sql让她了解,现把相关Sql放上来。
首先,我们创建一些测试数据。

if OBJECT_ID('Tempdb.dbo.#Tmp') is not null
drop table #Tmp
create table #Tmp
(
name nvarchar(10)
) insert into #Tmp
select N'张三'
union
select N'李四'
union
select N'王五'
union
select N'赵六'
union
select N'朱七'
union
select N'王八'
union all
select N'张三'

最后一个union用union all,因为我们多一行"张三"。
一、ROW_NUMBER() over(partition by columnname order by columnname)
select ROW_NUMBER()over(order by name) as num,* from #Tmp
可以得到按name排序的结果集。
ROW_NUMBER() over()还有一种用法,可以针对某列进行分组排序。
下面结果可以看到张三有1和2两个排序,而其他的名字排序都只有1。
select ROW_NUMBER()over(partition by name order by name) as num,* from #Tmp
二、RANK()over(order by columnname)
大家可以从下面的结果集看到,结果集少了5的编号,而有两个4的编号,然后直接跳到编号6。
select RANK()over(order by name),* from #Tmp
三、DENSE_RANK()over(order by columnname)
select DENSE_RANK()over(order by name),* from #Tmp
执行Sql后发现,下面的结果集有2个编号4的行,紧接着就是编号5的行。
DENSE_RANK()函数和RANK()函数差不多。
RANK()函数不管分几组,最后的编号一定和行数相同。
DENSE_RANK()函数最后的编号和分组的数目有关。
四、NTILE()OVER(ORDER BY COLUMNNAME)
select NTILE(2)over(order by name),* from #Tmp
select NTILE(3)over(order by name),* from #Tmp
NTILE后面的数字,是要把查询得到的结果平均分为几组。
如下图分为2和3组。
如果行数平均划分后还有余行,那么就把行分在最前面的几组上。
比如我们的结果有7行,要分为3组。
那么第一组3行,第二组2行,第三组2行。
如果我们结果有14行,平均分为3组。
那么第一组5行,第二组5行,第三组4行。
依此类推。
One of the most obvious and useful set of window functions are ranking functions where rows from your result set are ranked according to a certain scheme. There are three ranking functions:
ROW_NUMBER()
RANK()
DENSE_RANK()
The difference is easy to remember. For the examples, let’s assume we have this table (using PostgreSQL syntax):
CREATE TABLE t(v) AS
SELECT * FROM (
VALUES('a'),('a'),('a'),('b'),
('c'),('c'),('d'),('e')
) t(v)
ROW_NUMBER()
… assigns unique numbers to each row within the PARTITION
given the ORDER BY
clause. So you’d get:
SELECT v, ROW_NUMBER() OVER()
FROM t
Note that some SQL dialects (e.g. SQL Server) require an explicit ORDER BY
clause in the OVER()
clause:
SELECT v, ROW_NUMBER() OVER(ORDER BY v)
FROM t
The above query returns:
RANK()
… behaves like ROW_NUMBER()
, except that “equal” rows are ranked the same. If we substitute RANK()
into our previous query:
SELECT v, RANK() OVER(ORDER BY v)
FROM t
… then the result we’re getting is this:
As you can see, much like in a sports ranking, we have gaps between the different ranks. We can avoid those gaps by using
DENSE_RANK()
Trivially, DENSE_RANK()
is a rank with no gaps, i.e. it is “dense”. We can write:
SELECT v, DENSE_RANK() OVER(ORDER BY v)
FROM t
… to obtain
One interesting aspect of DENSE_RANK()
is the fact that it “behaves like” ROW_NUMBER()
when we add the DISTINCT
keyword.
SELECT DISTINCT v, DENSE_RANK() OVER(ORDER BY v)
FROM t
… to obtain
In fact, ROW_NUMBER()
prevents you from using DISTINCT
, because ROW_NUMBER()
generates unique values across the partition beforeDISTINCT
is applied:
SELECT DISTINCT v, ROW_NUMBER() OVER(ORDER BY v)
FROM t
ORDER BY 1, 2
DISTINCT
has no effect:
Putting it all together
A good way to understand the three ranking functions is to see them all in action side-by-side. Run this query
SELECT
v,
ROW_NUMBER() OVER(ORDER BY v),
RANK() OVER(ORDER BY v),
DENSE_RANK() OVER(ORDER BY v)
FROM t
ORDER BY 1, 2
… or this one (using the SQL standard WINDOW
clause, to reuse window specifications):
SELECT
v,
ROW_NUMBER() OVER(w),
RANK() OVER(w),
DENSE_RANK() OVER(w)
FROM t
WINDOW w AS (ORDER BY v)
… to obtain:
Note that unfortunately, the WINDOW
clause is not supported in all databases.
SQL Server - 四种排序, ROW_NUMBER() /RANK() /DENSE_RANK() /ntile() over()的更多相关文章
- SQL Server中排名函数row_number,rank,dense_rank,ntile详解
SQL Server中排名函数row_number,rank,dense_rank,ntile详解 从SQL SERVER2005开始,SQL SERVER新增了四个排名函数,分别如下:1.row_n ...
- SQL Server:排名函数row_number,rank,dense_rank,ntile详解
1.Row_Number函数 row_number函数大家比较熟悉一些,因为它的用途非常的广泛,我们经常在分页与排序中用到它,它的功能就是在每一行中生成一个连续的不重复的序号 例如: select S ...
- ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over()
ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over() 今天女票问我SqlServer的四种排序,当场写了几句Sql让她了解,现把相关Sql放上来. 首先, ...
- 【SQL】四种排序开窗函数
一 .简单了解什么是开窗函数 什么是开窗函数,开窗函数有什么作用,特征是什么? 所谓开窗函数就是定义一个行为列,简单讲,就是在你查询的结果上,直接多出一列值(可以是聚合值或是排序号),特征就是带有ov ...
- 知方可补不足~row_number,rank,dense_rank,ntile排名函数的用法
回到目录 这篇文章介绍SQL中4个很有意思的函数,我称它的行标函数,它们是row_number,rank,dense_rank和ntile,下面分别进行介绍. 一 row_number:它为数据表加一 ...
- SQL-OVER与四种排名函数:ROW_NUMBER(),RANK(),DENSE_RANK(),NTILE()
1 SELECT orderid,custid,val, ROW_NUMBER() OVER(ORDER BY val) AS rownum, RANK() OVER(ORDER BY val) AS ...
- SqlServer四种排序:ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over()
首先,我们创建一些测试数据. if OBJECT_ID('Tempdb.dbo.#Tmp') is not null drop table #Tmp create table #Tmp ( name ...
- PCB MS SQL 排序应用(row_number rank dense_rank NTILE PARTITION)
一.排序前,准备数据 --表变量 ),流程数 int) insert into @table union all union all union all union all --查看一下 select ...
- sqlserver 中row_number,rank,dense_rank,ntile排名函数的用法
1.row_number() 就是行号 2.rank:类似于row_number,不同之处在于,它会对order by 的字段进行处理,如果这个字段值相同,那么,行号保持不变 3.dense_rank ...
随机推荐
- Python学习--Python变量类型
变量存储在内存中的值.这就意味着在创建变量时会在内存中开辟一个空间. 基于变量的数据类型,解释器会分配指定内存,并决定什么数据可以被存储在内存中. 因此,变量可以指定不同的数据类型,这些变量可以存储整 ...
- Java内存模型知识点小结---《深入理解Java内存模型》(程晓明)读书总结
一.Java内存模型介绍 内存模型的作用范围: 在Java中,所有实例域.静态域和数组元素存放在堆内存中,线程之间共享,下文称之为“共享变量”.局部变量.方法参数.异常处理器等不会在线程之间共享,不存 ...
- jquery.filter() 实现元素前3个显示,其余的隐藏
<head> <meta charset="UTF-8"> <title></title> <style> li { ...
- 双字节验证:vue输入框中英文字数长度验证
export default { data() { let validcodeName=(rule,value,callback)=>{ //替换双字节汉字,为aa,限制输入框长度: if(va ...
- 磁盘IO的性能指标 阻塞与非阻塞、同步与异步 I/O模型
磁盘IO的性能指标 - 蝈蝈俊 - 博客园https://www.cnblogs.com/ghj1976/p/5611648.html 阻塞与非阻塞.同步与异步 I/O模型 - 蝈蝈俊.net - C ...
- Java中NIO和IO区别和适用场景
NIO是为了弥补IO操作的不足而诞生的,NIO的一些新特性有:非阻塞I/O,选择器,缓冲以及管道.管道(Channel),缓冲(Buffer) ,选择器( Selector)是其主要特征. 概念解释: ...
- supervisor进程管理的使用
介绍 Supervisor是用Python开发的一套通用的进程管理程序,能将一个普通的命令行进程变为后台daemon,并监控进程状态,异常退出时能自动重启.它是通过fork/exec的方式把这些被管理 ...
- Scrapy-redis 组件
scrapy-redis 简介 scrapy-redis是scrapy框架基于redis数据库的组件,用于scrapy项目的分布式开发和部署. 特征 分布式爬取 可以启动多个spider工程,相互之间 ...
- pestle.phar
nstalll: 1,cd /usr/local/bin && curl -LO http://pestle.pulsestorm.net/pestle.phar : 2,chmod ...
- 【Spring】手写Spring MVC
Spring MVC原理 Spring的MVC框架主要由DispatcherServlet.处理器映射.处理器(控制器).视图解析器.视图组成. 完整的Spring MVC处理 流程如下: Sprin ...