>>>>英文版 (更简洁易懂)<<<<

转载自:https://dzone.com/articles/difference-between-rownumber

One of the most obvious and useful set of window functions are ranking functions where rows from your result set are ranked according to a certain scheme. There are three ranking functions:

  • ROW_NUMBER()
  • RANK()
  • DENSE_RANK()

The difference is easy to remember. For the examples, let’s assume we have this table (using PostgreSQL syntax):

CREATE TABLE t(v) AS
SELECT * FROM (
VALUES('a'),('a'),('a'),('b'),
('c'),('c'),('d'),('e')
) t(v)

ROW_NUMBER()

… assigns unique numbers to each row within the PARTITION given the ORDER BY clause. So you’d get:

SELECT v, ROW_NUMBER() OVER()
FROM t

Note that some SQL dialects (e.g. SQL Server) require an explicit ORDER BY clause in the OVER() clause:

SELECT v, ROW_NUMBER() OVER(ORDER BY v)
FROM t

The above query returns:

RANK()

… behaves like ROW_NUMBER(), except that “equal” rows are ranked the same. If we substitute RANK() into our previous query:

SELECT v, RANK() OVER(ORDER BY v)
FROM t

… then the result we’re getting is this:

As you can see, much like in a sports ranking, we have gaps between the different ranks. We can avoid those gaps by using

DENSE_RANK()

Trivially, DENSE_RANK() is a rank with no gaps, i.e. it is “dense”. We can write:

SELECT v, DENSE_RANK() OVER(ORDER BY v)
FROM t

… to obtain

One interesting aspect of DENSE_RANK() is the fact that it “behaves like” ROW_NUMBER()when we add the DISTINCT keyword.

SELECT DISTINCT v, DENSE_RANK() OVER(ORDER BY v)
FROM t

… to obtain

In fact, ROW_NUMBER() prevents you from using DISTINCT, because ROW_NUMBER()generates unique values across the partition beforeDISTINCT is applied:

SELECT DISTINCT v, ROW_NUMBER() OVER(ORDER BY v)
FROM t
ORDER BY 1, 2

DISTINCT has no effect:

Putting it all together

A good way to understand the three ranking functions is to see them all in action side-by-side. Run this query

SELECT
v,
ROW_NUMBER() OVER(ORDER BY v),
RANK() OVER(ORDER BY v),
DENSE_RANK() OVER(ORDER BY v)
FROM t
ORDER BY 1, 2

… to obtain:

Note that unfortunately, the WINDOW clause is not supported in all databases.

>>>>中文版<<<<

转载自:https://www.cnblogs.com/SunnyZhu/p/5762898.html

SqlServer的四种排序,当场写了几句Sql让她了解,现把相关Sql放上来。

首先,我们创建一些测试数据。

if OBJECT_ID('Tempdb.dbo.#Tmp') is not null
drop table #Tmp
create table #Tmp
(
name nvarchar(10)
) insert into #Tmp
select N'张三'
union
select N'李四'
union
select N'王五'
union
select N'赵六'
union
select N'朱七'
union
select N'王八'
union all
select N'张三'

最后一个union用union all,因为我们多一行"张三"。

一、ROW_NUMBER() over(partition by columnname order by columnname)

select ROW_NUMBER()over(order by name) as num,* from #Tmp

可以得到按name排序的结果集。

ROW_NUMBER() over()还有一种用法,可以针对某列进行分组排序。

下面结果可以看到张三有1和2两个排序,而其他的名字排序都只有1。

select ROW_NUMBER()over(partition by name order by name) as num,* from #Tmp

二、RANK()over(order by columnname)

大家可以从下面的结果集看到,结果集少了5的编号,而有两个4的编号,然后直接跳到编号6。

select RANK()over(order by name),* from #Tmp

三、DENSE_RANK()over(order by columnname)

select DENSE_RANK()over(order by name),* from #Tmp

执行Sql后发现,下面的结果集有2个编号4的行,紧接着就是编号5的行。

DENSE_RANK()函数和RANK()函数差不多。

RANK()函数不管分几组,最后的编号一定和行数相同。

DENSE_RANK()函数最后的编号和分组的数目有关。

四、NTILE()OVER(ORDER BY COLUMNNAME)

select NTILE(2)over(order by name),* from #Tmp
select NTILE(3)over(order by name),* from #Tmp
NTILE后面的数字,是要把查询得到的结果平均分为几组。
如下图分为2和3组。
如果行数平均划分后还有余行,那么就把行分在最前面的几组上。
比如我们的结果有7行,要分为3组。
那么第一组3行,第二组2行,第三组2行。
如果我们结果有14行,平均分为3组。
那么第一组5行,第二组5行,第三组4行。
依此类推。

One of the most obvious and useful set of window functions are ranking functions where rows from your result set are ranked according to a certain scheme. There are three ranking functions:

  • ROW_NUMBER()
  • RANK()
  • DENSE_RANK()

The difference is easy to remember. For the examples, let’s assume we have this table (using PostgreSQL syntax):

 
CREATE TABLE t(v) AS
 
SELECT * FROM (
 
  VALUES('a'),('a'),('a'),('b'),
 
        ('c'),('c'),('d'),('e')
 
) t(v)
 

ROW_NUMBER()

… assigns unique numbers to each row within the PARTITION given the ORDER BY clause. So you’d get:

 
SELECT v, ROW_NUMBER() OVER()
 
FROM t
 

Note that some SQL dialects (e.g. SQL Server) require an explicit ORDER BY clause in the OVER() clause:

 
SELECT v, ROW_NUMBER() OVER(ORDER BY v)
 
FROM t
 

The above query returns:

(see also this SQLFiddle)

RANK()

… behaves like ROW_NUMBER(), except that “equal” rows are ranked the same. If we substitute RANK() into our previous query:

 
SELECT v, RANK() OVER(ORDER BY v)
 
FROM t
 

… then the result we’re getting is this:

(see also this SQLFiddle)

As you can see, much like in a sports ranking, we have gaps between the different ranks. We can avoid those gaps by using

DENSE_RANK()

Trivially, DENSE_RANK() is a rank with no gaps, i.e. it is “dense”. We can write:

 
SELECT v, DENSE_RANK() OVER(ORDER BY v)
 
FROM t
 

… to obtain

(see also this SQLFiddle)

One interesting aspect of DENSE_RANK() is the fact that it “behaves like” ROW_NUMBER()when we add the DISTINCT keyword.

 
SELECT DISTINCT v, DENSE_RANK() OVER(ORDER BY v)
 
FROM t
 

… to obtain

(see also this SQLFiddle)

In fact, ROW_NUMBER() prevents you from using DISTINCT, because ROW_NUMBER()generates unique values across the partition beforeDISTINCT is applied:

 
SELECT DISTINCT v, ROW_NUMBER() OVER(ORDER BY v)
 
FROM t
 
ORDER BY 1, 2
 

DISTINCT has no effect:

(see also this SQLFiddle)

Putting it all together

A good way to understand the three ranking functions is to see them all in action side-by-side. Run this query

 
SELECT
 
  v,
 
  ROW_NUMBER() OVER(ORDER BY v),
 
  RANK()       OVER(ORDER BY v),
 
  DENSE_RANK() OVER(ORDER BY v)
 
FROM t
 
ORDER BY 1, 2
 

… or this one (using the SQL standard WINDOW clause, to reuse window specifications):

 
SELECT
 
  v,
 
  ROW_NUMBER() OVER(w),
 
  RANK()       OVER(w),
 
  DENSE_RANK() OVER(w)
 
FROM t
 
WINDOW w AS (ORDER BY v)
 

… to obtain:

(see also this SQLFiddle)

Note that unfortunately, the WINDOW clause is not supported in all databases.

SQL Server - 四种排序, ROW_NUMBER() /RANK() /DENSE_RANK() /ntile() over()的更多相关文章

  1. SQL Server中排名函数row_number,rank,dense_rank,ntile详解

    SQL Server中排名函数row_number,rank,dense_rank,ntile详解 从SQL SERVER2005开始,SQL SERVER新增了四个排名函数,分别如下:1.row_n ...

  2. SQL Server:排名函数row_number,rank,dense_rank,ntile详解

    1.Row_Number函数 row_number函数大家比较熟悉一些,因为它的用途非常的广泛,我们经常在分页与排序中用到它,它的功能就是在每一行中生成一个连续的不重复的序号 例如: select S ...

  3. ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over()

    ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over()   今天女票问我SqlServer的四种排序,当场写了几句Sql让她了解,现把相关Sql放上来. 首先, ...

  4. 【SQL】四种排序开窗函数

    一 .简单了解什么是开窗函数 什么是开窗函数,开窗函数有什么作用,特征是什么? 所谓开窗函数就是定义一个行为列,简单讲,就是在你查询的结果上,直接多出一列值(可以是聚合值或是排序号),特征就是带有ov ...

  5. 知方可补不足~row_number,rank,dense_rank,ntile排名函数的用法

    回到目录 这篇文章介绍SQL中4个很有意思的函数,我称它的行标函数,它们是row_number,rank,dense_rank和ntile,下面分别进行介绍. 一 row_number:它为数据表加一 ...

  6. SQL-OVER与四种排名函数:ROW_NUMBER(),RANK(),DENSE_RANK(),NTILE()

    1 SELECT orderid,custid,val, ROW_NUMBER() OVER(ORDER BY val) AS rownum, RANK() OVER(ORDER BY val) AS ...

  7. SqlServer四种排序:ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over()

    首先,我们创建一些测试数据. if OBJECT_ID('Tempdb.dbo.#Tmp') is not null drop table #Tmp create table #Tmp ( name ...

  8. PCB MS SQL 排序应用(row_number rank dense_rank NTILE PARTITION)

    一.排序前,准备数据 --表变量 ),流程数 int) insert into @table union all union all union all union all --查看一下 select ...

  9. sqlserver 中row_number,rank,dense_rank,ntile排名函数的用法

    1.row_number() 就是行号 2.rank:类似于row_number,不同之处在于,它会对order by 的字段进行处理,如果这个字段值相同,那么,行号保持不变 3.dense_rank ...

随机推荐

  1. VirtualBox修改UUID实现虚拟硬盘的重复利用

    其实,记录这个是为了留给自己看.每次用每次查,已经老到什么东西都记不住了.本次查询是从这里(VirtualBox 修改UUID实现虚拟硬盘复制)获得帮助的,感谢. 在VirtualBox把一个已经使用 ...

  2. Golang 入门系列(十一)Go语言实现webapi

    之前,已经讲过很多Golang的东西,比如基础语法,mysql的使用,redis的使用等等,感兴趣的可以看看以前的文章,https://www.cnblogs.com/zhangweizhong/ca ...

  3. Epemme

    Goss wa lap tirre kamme da, Waess u'malarre zuzze nasa. Mat abbe price junirre nay, Ywe zay prolodde ...

  4. 关于gitee代码上传下载

    1.在gitee上面创建新分支: 2.复制本地ssh秘钥(C:\Users\Administrator\.ssh) 添加到 gitee设置页面的ssh:(如果之前没有秘钥,就执行ssh-keygen ...

  5. hMailServer配置图文详细教程

    https://www.hmailserver.org/viewtopic.php?f=4&t=6

  6. [转帖]Sqlserver BCP 的用法

    SQL Server中bcp命令的用法以及数据批量导入导出 http://www.cnblogs.com/xwdreamer/archive/2012/08/22/2651180.html 我这边使用 ...

  7. 基于HA机制的Nginx配置实现

    Keepalived是一个基于VRRP协议来实现服务高可用方案.下载地址:http://www.keepalived.org/ keepalived-1.2.24.tar.gz VRRP协议:虚拟路由 ...

  8. Excel Foundation Install

    安装Excel API 函数库 1. 通过下载工具下载函数库 下载 ExcelAPI函数库更新工具   下载 ExcelAPI函数库离线包   ExcelAPI(WPS)函数库离线包      Exc ...

  9. jsp篇 之 jsp中的注释

    Jsp中的注释: 第一种: <!-- html/xml中的注释方式 --> 特点: 1.用户在浏览器中右键查看源代码 [能] 看到这个注释. 2.在服务器端,这个jsp页面被翻译成的jav ...

  10. 【数学建模】数模day13-灰色系统理论I-灰色关联与GM(1,1)预测

    接下来学习灰色系统理论. 0. 什么是灰色系统? 部分信息已知而部分信息未知的系统,我们称之为灰色系统.相应的,知道全部信息的叫白色系统,完全未知的叫黑色系统. 为什么采用灰色系统理论? 在给定信息不 ...