[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\bf A}$ 可逆, 则 $|{\bf A}^2-{\bf B}|>0$.
证明: 由 ${\bf A}^T=-{\bf A}$ 知 $$\bex |{\bf A}|=|{\bf A}^T|=(-1)^n |{\bf A}|. \eex$$ 故 $n$ 为偶数 (否则, $|{\bf A}|=0$, ${\bf A}$ 不可逆). 又 ${\bf A}$ 可逆, ${\bf A}^T{\bf A}$ 正定, 而存在可逆阵 ${\bf P}$, 使得 ${\bf P}^T{\bf A}^T{\bf A}{\bf P}={\bf E}$. 于是 $$\beex \bea |{\bf P}^T|\cdot|{\bf A}^2-{\bf B}|\cdot|{\bf P}| &=|{\bf P}^T|\cdot|-{\bf A}^T{\bf A}-{\bf B}|\cdot|{\bf P}|\\ &=|{\bf P}^T|\cdot|{\bf A}^T{\bf A}+{\bf B}|\cdot|{\bf P}|\quad\sex{n\mbox{ 为偶数}}\\ &=|{\bf E}+{\bf P}^T{\bf B}{\bf P}|. \eea \eeex$$ 既然 ${\bf P}^T{\bf B}{\bf P}$ 也是反对称矩阵, 而存在正交阵 ${\bf Q}$, 使得 (参考文献) $$\bex {\bf Q}^T{\bf P}^T{\bf B}{\bf P}{\bf Q} =\sex{\ba{cccc} {\bf D}&&&\\ &\ddots&&\\ &&{\bf D}&\\ &&&{\bf 0} \ea},\quad{\bf D}=\sex{\ba{cc} 0&1\\ -1&0 \ea}. \eex$$ 于是 $$\beex \bea |{\bf Q}^T\cdot{\bf P}^T|\cdot|{\bf A}^2-{\bf B}|\cdot|{\bf P}\cdot{\bf Q}| &=\sev{{\bf E}+\sex{\ba{cccc} {\bf D}&&&\\ &\ddots&&\\ &&{\bf D}&\\ &&&{\bf 0} \ea}}\\ &=2^r\quad\sex{r\mbox{ 为 }\sex{\ba{cccc} {\bf D}&&&\\ &\ddots&&\\ &&{\bf D}&\\ &&&{\bf 0} \ea}\mbox{ 中 }{\bf D}\mbox{ 的个数}}\\ &>0. \eea \eeex$$
关于反对称矩阵, 这里有更多的资料.
[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)的更多相关文章
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- SpringBoot+mybatis使用@Transactional无效
项目中新增过程中如果出现异常需要回滚, 在service实现方法中使用@Transactional注解失效 解决: 1, 在controller中使用try{}catch捕捉异常 2, 在servic ...
- Python基础——3特性
特性 切片 L=[0,1,2,3,4,5,6,7,8,9,10] L[:3]=[0,1,2] L[-2:]=[9,10] L[1:3]=[1,2] L[::3]=[0,3,6,9] L[:5:2]=[ ...
- 文本分类实战(三)—— charCNN模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- error C2381: “exit”: 重定义;__declspec(noreturn) 不同
问题: error C2381: “exit” : 重定义:__declspec(noreturn) 不同 解决办法: 调换一下头文件的包含次序: #include <GL/glut.h> ...
- nginx加密,访问接口认证
使用htpasswd加密做接口认证 首先,安装htpasswd: yum install -y httpd-tools mkdir -p /usr/local/src/nginx/ 设置用户以及密码: ...
- 在 CentOS 7 中安装 MySQL 8
准备 本文环境信息: 软件 版本 CentOS CentOS 7.4 MySQL 8.0.x 安装前先更新系统所有包 sudo yum update 安装 1. 添加 Yum 包 wget https ...
- Spring 简单使用IoC与DI——XML配置
目录 Spring简介 导入jar包 Spring配置文件 Spring的IoC IoC简介 快速使用IoC Spring创建对象的三种方式 使用构造方法 使用实例工厂 使用静态静态工厂 Spring ...
- python 必学模块collections
包含的主要功能如下 查看collections 的源码我们可以看到其为我们封装了以下的数据结果供我们调用 __all__ = ['deque', 'defaultdict', 'namedtuple' ...
- Sql JOIN 一张图说明
一图说明:
- springmvc解决中文乱码问题
1 第一种情况(get接收参数): 最近在用solr做一个搜索服务,发布给手机和pc等客户端调用,调用方式为: http://www.ganbo.search/search?q="手机& ...