leetcode — recover-binary-search-tree
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
/**
* Source : https://oj.leetcode.com/problems/recover-binary-search-tree/
*
*
* Two elements of a binary search tree (BST) are swapped by mistake.
*
* Recover the tree without changing its structure.
*
* Note:
* A solution using O(n) space is pretty straight forward. Could you devise a constant space solution?
*
* confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.
*
* OJ's Binary Tree Serialization:
*
* The serialization of a binary tree follows a level order traversal, where '#' signifies
* a path terminator where no node exists below.
*
* Here's an example:
*
* 1
* / \
* 2 3
* /
* 4
* \
* 5
*
* The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".
*/
public class RecoverBinarySearchTree {
private TreeNode n1;
private TreeNode n2;
private TreeNode pre;
/**
* 搜索二叉树
* 将错误调换位置的两个元素恢复位置
*
* 先中序遍历树,将节点的value放到一个数组中,并将节点也放到一个数组中
* 然后将value数组排序
* 然后依次赋值给节点数组中每个节点,然后将节点数组恢复成一棵树
* 占用空间为O(n)
*
* @param root
* @return
*/
public TreeNode recover (TreeNode root) {
List<Integer> arr = new ArrayList<Integer>();
List<TreeNode> treeList = new ArrayList<TreeNode>();
traverseInorder(root, arr, treeList);
Collections.sort(arr);
for (int i = 0; i < arr.size(); i++) {
treeList.get(i).value = arr.get(i);
}
return root;
}
public void traverseInorder (TreeNode root, List<Integer> arr, List<TreeNode> treeList) {
if (root == null) {
return ;
}
traverseInorder(root.leftChild, arr, treeList);
arr.add(root.value);
treeList.add(root);
traverseInorder(root.rightChild, arr, treeList);
}
/**
* 二叉搜索树:中序遍历的时候是单调递增的
*
* 中序遍历树,将树遍历为一个链表,当前节点的值一定大于上一个节点的值,否则就是被调换的节点,中序遍历的时候记录调换的两个节点
* 因为只有两个节点被置换,所以如果是第一次出现上一个节点的值大于当前节点,说明是被换到其前面的节点,所以被置换的是上一个节点
* 如果是第二次出现上一个节点的值大于当前节点,那么当前节点是被置换的节点
* 中序遍历完成后,调换记录的两个节点的值,就恢复了二叉搜索树
*
* @param root
* @return
*/
public TreeNode recoverTree (TreeNode root) {
traverseInorder(root);
if (n1 != null && n2 != null) {
int temp = n1.value;
n1.value = n2.value;
n2.value = temp;
}
return root;
}
public void traverseInorder (TreeNode root) {
if (root == null) {
return;
}
traverseInorder(root.leftChild);
if (pre != null) {
if (pre.value > root.value) {
if (n1 == null) {
n1 = pre;
}
n2 = root;
}
}
pre = root;
traverseInorder(root.rightChild);
}
public TreeNode createTree (char[] treeArr) {
TreeNode[] tree = new TreeNode[treeArr.length];
for (int i = 0; i < treeArr.length; i++) {
if (treeArr[i] == '#') {
tree[i] = null;
continue;
}
tree[i] = new TreeNode(treeArr[i]-'0');
}
int pos = 0;
for (int i = 0; i < treeArr.length && pos < treeArr.length-1; i++) {
if (tree[i] != null) {
tree[i].leftChild = tree[++pos];
if (pos < treeArr.length-1) {
tree[i].rightChild = tree[++pos];
}
}
}
return tree[0];
}
/**
* 使用广度优先遍历将树转化为数组
*
* @param root
* @param chs
*/
public void binarySearchTreeToArray (TreeNode root, List<Character> chs) {
if (root == null) {
chs.add('#');
return;
}
List<TreeNode> list = new ArrayList<TreeNode>();
int head = 0;
int tail = 0;
list.add(root);
chs.add((char) (root.value + '0'));
tail ++;
TreeNode temp = null;
while (head < tail) {
temp = list.get(head);
if (temp.leftChild != null) {
list.add(temp.leftChild);
chs.add((char) (temp.leftChild.value + '0'));
tail ++;
} else {
chs.add('#');
}
if (temp.rightChild != null) {
list.add(temp.rightChild);
chs.add((char)(temp.rightChild.value + '0'));
tail ++;
} else {
chs.add('#');
}
head ++;
}
//去除最后不必要的
for (int i = chs.size()-1; i > 0; i--) {
if (chs.get(i) != '#') {
break;
}
chs.remove(i);
}
}
private class TreeNode {
TreeNode leftChild;
TreeNode rightChild;
int value;
public TreeNode(int value) {
this.value = value;
}
public TreeNode() {
}
}
public static void main(String[] args) {
RecoverBinarySearchTree recoverBinarySearchTree = new RecoverBinarySearchTree();
char[] tree = new char[]{'3','4','5','#','#','2'};
List<Character> chars = new ArrayList<Character>();
recoverBinarySearchTree.binarySearchTreeToArray(recoverBinarySearchTree.recover(recoverBinarySearchTree.createTree(tree)), chars);
System.out.println(Arrays.toString(chars.toArray(new Character[chars.size()])));
chars = new ArrayList<Character>();
recoverBinarySearchTree.binarySearchTreeToArray(recoverBinarySearchTree.recoverTree(recoverBinarySearchTree.createTree(tree)), chars);
System.out.println(Arrays.toString(chars.toArray(new Character[chars.size()])));
}
}
leetcode — recover-binary-search-tree的更多相关文章
- LeetCode: Recover Binary Search Tree 解题报告
Recover Binary Search Tree Two elements of a binary search tree (BST) are swapped by mistake. Recove ...
- [LeetCode] Recover Binary Search Tree 复原二叉搜索树
Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...
- [leetcode]Recover Binary Search Tree @ Python
原题地址:https://oj.leetcode.com/problems/recover-binary-search-tree/ 题意: Two elements of a binary searc ...
- [Leetcode] Recover Binary Search Tree
Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...
- LeetCode: Recover Binary Search Tree [099]
[题目] Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without cha ...
- [Leetcode] Recover binary search tree 恢复二叉搜索树
Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...
- LeetCode Recover Binary Search Tree——二查搜索树中两个节点错误
Two elements of a binary search tree (BST) are swapped by mistake.Recover the tree without changing ...
- [线索二叉树] [LeetCode] 不需要栈或者别的辅助空间,完成二叉树的中序遍历。题:Recover Binary Search Tree,Binary Tree Inorder Traversal
既上篇关于二叉搜索树的文章后,这篇文章介绍一种针对二叉树的新的中序遍历方式,它的特点是不需要递归或者使用栈,而是纯粹使用循环的方式,完成中序遍历. 线索二叉树介绍 首先我们引入“线索二叉树”的概念: ...
- Leetcode 笔记 99 - Recover Binary Search Tree
题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...
- [LeetCode] 99. Recover Binary Search Tree(复原BST) ☆☆☆☆☆
Recover Binary Search Tree leetcode java https://leetcode.com/problems/recover-binary-search-tree/di ...
随机推荐
- sql基本语法
sql基本语法 sql server 查询 多表查询 直接多表查询 select * from st_profiles,st_score_report 上面的语句将会产生两个表的笛卡尔乘积,其中大部分 ...
- C++类第五课:类的使用(三)[个人见解]
继承既然已经知道了是什么意思了,下面我们来学封装! 什么是封装?我们来举个例子: 1.你不能随意挥霍父母的血汗钱,血汗钱是作为他们的私有财产,而父母因为某些原因会主动给你,你才能用的舒心,否则父母不会 ...
- HTML 5将给开发者带来什么?
在新的时代里,相信网页技术会伴随HTML 5的来临进入大洗牌的局面,HTML 5旨在解决Web中的交互,媒体,本地操作等问题,一些浏览器已经尝试支持HTML 5的一些功能,而开发者们有望最终从那些We ...
- AT与ATX电源 - 1 系统状态
ATX与AT电源比较 ATX电源普遍应用在PC中,它有两套电源,一个是正常操作使用:12V,5V,3.3V和-12V,还有一个独立的5V待机电源,所谓的待机电源就是其ON的充要条件是AC输入存在,而正 ...
- spring创建bean的三种方式
spring创建bean的三种方式: 1通过构造方法创建bean(最常用) 1.1 spring默认会通过无参构造方法来创建bean,如果xml文件是这样配置,则实体类中必须要有无参构造方法,无参构造 ...
- gridlayout代码注释
<div class="wrapper"> //定义一节或者一部分区域,它的css样式对应的css中class选择器的wrapper <div class=&qu ...
- Android Studio 真机调试 连接手机
前提:adb环境已经配置 手机端: 1.打开手机开发者权限,”设置“ 中找到 “版本号”,连续多次点击,会提示打开“开发者”.我的是 “设置” --> "关于手机" --&g ...
- React Native 0.50版本新功能简介
React Native在2017年经历了众多版本的迭代,从接触的0.29版本开始,到前不久发布的0.52版本,React Native作为目前最受欢迎的移动跨平台方案.虽然,目前存在着很多的功能和性 ...
- 微信小程序 + mock.js 实现后台模拟及调试
一.创建小程序项目 mock.js 从 https://github.com/nuysoft/Mock/blob/refactoring/dist/mock.js 下载 api.js:配置模拟数据和后 ...
- Python公众号开发(二)—颜值检测
上篇文章,我们把自己的程序接入了微信公众号,并且能把用户发送的文本及图片文件原样返回.今天我们把用户的图片通过腾讯的AI平台分析后再返回给用户. 为了防止我的文章被到处转载,贴一下我的公众号[智能制造 ...