BZOJ 1053 - 反素数ant - [数论+DFS][HAOI2007]
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1053
题解:
可以证明,$1 \sim N$ 中最大的反质数,就是 $1 \sim N$ 中约数个数最多的数中,最小的那个。
证明:假设 $1 \sim N$ 中最大的反质数 $x$ 不是 $1 \sim N$ 中约数个数最多的,那么必然存在至少一个不等于 $x$ 的数字 $y$,它是 $1 \sim N$ 中约数个数最多的数中最小的,显然有 $g(y) > g(x)$。
那么,分类讨论两种情况:
1、$x < y$,显然 $[1,y)$ 中不可能找到一个 $i$ 使得 $g(y) \le g(i)$,因此 $g(y)$ 是一个反质数,且 $x < y$,$y$ 优于 $x$,不可能选 $x$ 作为答案。
2、$y > x$,此时 $g(y) > g(x)$,$x$ 不是一个反质数,不应当选择 $x$ 作为答案。
因此,不管怎么样,都不可能选择 $x$ 作为答案,因此只能选择 $1 \sim N$ 中约数个数最多的数作为答案,又显然的,应当选这些数字中最小的那一个。
证毕。
然后,我们可以进一步考虑,在给出的 $N \le 2e9$ 的前提下,$1 \sim N$ 中的任何数,其不相同质因子的个数不会超过 $10$ 个,因为 $2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 = 6469693230 > 2e9$。
同时,$1 \sim N$ 中的任何数,其任意一个质因子的幂次都不会超过 $30$,因为 $2^{31} > 2e9$。
最后,还可以证明 $x$ 如果是一个反质数,那么必然可以分解质因数成 $2^{c_1} \times 3^{c_2} \times 5^{c_3} \times 7^{c_4} \times 11^{c_5} \times 13^{c_6} \times 17^{c_7} \times 19^{c_8} \times 23^{c_9} \times 29^{c_{10}}$,且满足 $c_1 \ge c_2 \ge \cdots \ge c_{10} \ge 0$。
这个是因为,假设 $x$ 有一个质因子 $p>29$,那么 $2 \sim 29$ 这 $10$ 个质数必然至少有一个不能整除 $x$ 了,假设这个质数是 $q$,那么显然如果将 $p^k$ 换成 $q^k$,$x$ 就会变小,而且约数个数不变,也即存在一个 $x'<x$ 且 $g(x') = g(x)$,那么 $x$ 就不是反质数,证毕。
综上,我们可以暴力搜索 $2^{c_1} \times 3^{c_2} \times 5^{c_3} \times 7^{c_4} \times 11^{c_5} \times 13^{c_6} \times 17^{c_7} \times 19^{c_8} \times 23^{c_9} \times 29^{c_{10}}$ 中的 $c_1 \sim c_{10}$。我们可以通过 $c_1 \sim c_{10}$ 算出对应的约数个数,我们只需要维护约数个数最多的最小数即可。
AC代码(1A很舒服):
/**************************************************************
Problem: 1053
User: Dilthey
Language: C++
Result: Accepted
Time:24 ms
Memory:1288 kb
****************************************************************/ #include<bits/stdc++.h>
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
using namespace std;
typedef long long ll; ll n;
int p[]={,,,,,,,,,}, c[]; pair<ll,int> ans;
void dfs(int pos,int limit,ll num,int cnt)
{
if(pos>=)
{
if(cnt>ans.se) ans=mk(num,cnt);
if(cnt==ans.se && num<ans.fi) ans=mk(num,cnt);
return;
} for(ll i=,now=;i<=limit;i++,now*=p[pos])
{
if(num*now>n) break;
dfs(pos+,i,num*now,cnt*(i+));
}
} int main()
{
cin>>n;
ans=mk((ll)(2e9+),);
dfs(,,1LL,);
cout<<ans.fi<<endl;
}
BZOJ 1053 - 反素数ant - [数论+DFS][HAOI2007]的更多相关文章
- BZOJ 1053 反素数ant
初读这道题,一定有许多疑惑,其中最大的疑惑便是"反素数",反素数的概念很简单,就是,a<b同时a的因数个数大于b的因数个数.但是想要完成本题还需要一些信息,关于 ...
- BZOJ1053 [HAOI2007]反素数ant 数论
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - BZOJ1053 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正 ...
- Luogu P1463 [POI2002][HAOI2007]反素数【数论/dfs】By cellur925
题目传送门 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1 ...
- BZOJ 1053 & 反素数
题意: 反素数,膜一篇GOD's Blog...http://blog.csdn.net/ACdreamers/article/details/25049767 此文一出,无与争锋... CODE: ...
- 1053. [HAOI2007]反素数ant【DFS+结论】
Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x ,则称x为反质数.例如,整数 ...
- BZOJ 1053 反素数 题解
题面 引理1: 1~n中的最大反质数,就是1~n中约数个数最多的数中最小的一个(因为要严格保证g(x)>g(i)): 引理2:1~n中任何数的不同因子不会超过10个,因为他们的乘积大于2,00 ...
- BZOJ 1053: [HAOI2007]反素数ant dfs
1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...
- 【BZOJ】【1053】【HAOI2007】反素数ant
搜索 经典搜索题目(其实是蒟蒻只会搜……vfleaking好像有更优秀的做法?) 枚举质数的幂,其实深度没多大……因为$2^32$就超过N了……而且质数不能取的太大,所以不会爆…… /******** ...
- 【BZOJ】1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...
随机推荐
- Anaconda+django安装问题
Anaconda使用中常遇到如下问题: 如果Anaconda不是最新版本,可在Anaconda Prompt中使用如下命令更新至最新版 conda update -n base -c defaults ...
- day 16 - 2 内置函数(二)练习
内置函数(二)练习 1.用 map 来处理字符串列表,把列表中所有人都变成 sb,比方 alex_sbname=['alex','wupeiqi','yuanhao','nezha'] name=[' ...
- django反向解析传参
这两天写代码总是有反向解析传参顺带复习了一下反向解析,以下是简单的反向解析 以下是我最近写的很多的反向解析传参 想要实现点击修改将这些从数据库读取的内容传到另一个页面就要通过id来查询,那么我们就需 ...
- VUE项目的目录关系
1.页面中只有一个index.html. 2.一个js文件.在路由中. 3.主要的app.vue. 4.最后就是可以放多个vue文件的~~(一个页面对应一个vue文件,一个vue组件对应一个js中的i ...
- JDK 8 函数式编程入门
目录 1. 概述 1.1 函数式编程简介 1.2 Lambda 表达式简介 2. Lambda 表达式 2.1 Lambda 表达式的形式 2.2 闭包 2.3 函数接口 3. 集合处理 3.1 St ...
- Windows上安装nodejs版本管理器nvm
nvm最新的下载地址 Node版本管理器--nvm,可以运行在多种操作系统上.nvm for windows 是使用go语言编写的软件. 我电脑使用的是Windows操作系统,所以我要记录下在此操作系 ...
- BZOJ3257 [Zjoi2014]力 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8762639.html 题目传送门 - BZOJ3527 题意 给出长度为$m$的序列$q_{1..m}$,让你输 ...
- TopCoder SRM500 Div1 250 其他
原文链接https://www.cnblogs.com/zhouzhendong/p/SRM500-250.html SRM500 Div1 250 题意 (看题用了半个小时--) 有 n 个人(编号 ...
- Maven中pom.xml文件的配置
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...
- mysql安装运行(centos)
http://repo.mysql.com寻找需要的版本 wget -P /opt/downloads http://repo.mysql.com/mysql57-community-release- ...