题面是这样的,其实斐波那契我们之前也有接触过,并不是什么太陌生的玩意,第一个想到的方法其实是用递归来做,这样的话其实是非常轻松的,but同志们你们有没有关注过这样一个鬼东西

你以为蓝题是让你切着玩的吗??????

果不其然,递归写了一个,大红大紫啊喂

(雾

不过的确过不了就是了,直到我打开了题解,发现了一个叫矩阵快速幂的玩意

Fn表示数列的第n项

那么我们如果把Fn,Fn-1写成蒟阵的形式,可以按照如下推导过程对这个蒟阵进行拆分,从而写成便于计算的形式

其实我们就是把递归用矩阵的方式写了出来,然后想求第n项就直接输出矩阵的n次幂即可

快速幂在另一篇博客里看这里qaq

其实这道题的难点就是矩阵快速幂,既然会了这个的话就没什么大问题啦~

代码如下:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> pr;
const double pi=acos(-);
#define rep(i,a,n) for(ll i=a;i<=n;i++)
#define per(i,n,a) for(ll i=n;i>=a;i--)
#define Rep(i,u) for(int i=head[u];i;i=Next[i])
#define clr(a) memset(a,0,sizeof a)
#define pb push_back
#define mp make_pair
#define fi first
#define sc second
ld eps=1e-;
ll pp=;
ll mo(ll a,ll pp){if(a>= && a<pp)return a;a%=pp;if(a<)a+=pp;return a;}
ll powmod(ll a,ll b,ll pp){ll ans=;for(;b;b>>=,a=mo(a*a,pp))if(b&)ans=mo(ans*a,pp);return ans;}
ll read(){
ll ans=;
char last=' ',ch=getchar();
while(ch<'' || ch>'')last=ch,ch=getchar();
while(ch>='' && ch<='')ans=ans*+ch-'',ch=getchar();
if(last=='-')ans=-ans;
return ans;
}
//head 从这里开始哦
struct matrix{
ll a[][];
};//注意这里要用ll保证不会爆
matrix operator *(matrix a, matrix b){//定义*运算
matrix c;
rep(i,,)//简写的方式,for(int i =1;i<=n;++i)
   rep(j,,){
c.a[i][j]=;
rep(k,,)
c.a[i][j] = (c.a[i][j]+a.a[i][k]*b.a[k][j])%pp;
}
return c;
}
ll k;
int main(){
cin>>k;
matrix a;
a.a[][]=;a.a[][]=;
a.a[][]=;a.a[][]=;
matrix ans;
ans.a[][]=;ans.a[][]=;
ans.a[][]=;ans.a[][]=;//把ans初始化为单位矩阵
ll b=k-;
while(b){
if(b&)ans=ans*a;
a=a*a;
b/=;
}//一个快速幂
ll fk = (ans.a[][]+ ans.a[][])%pp;
cout<<fk<<endl;//O(log B *2^3)
}

P1962 斐波那契数列的更多相关文章

  1. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  2. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  3. 洛谷——P1962 斐波那契数列

    P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...

  4. P1962 斐波那契数列 【矩阵快速幂】

    一.题目 P1962 斐波那契数列 二.分析 比较基础的递推式转换为矩阵递推,这里因为$n$会超出$int$类型,所以需要用矩阵快速幂加快递推. 三.AC代码 1 #include <bits/ ...

  5. Luogu P1962 斐波那契数列(矩阵乘法模板)

    传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...

  6. 洛谷—— P1962 斐波那契数列

    https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...

  7. [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  8. 洛谷P1962 斐波那契数列(矩阵快速幂)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  9. 洛谷P1962 斐波那契数列题解

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  10. 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导

    来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...

随机推荐

  1. Scrapped or attached views may not be recycled

    在使用recycleView的时候出现了错误Scrapped or attached views may not be recycled 原因: view没有被recycled,recyclerVie ...

  2. matlab练习程序(神经网络识别mnist手写数据集)

    记得上次练习了神经网络分类,不过当时应该有些地方写的还是不对. 这次用神经网络识别mnist手写数据集,主要参考了深度学习工具包的一些代码. mnist数据集训练数据一共有28*28*60000个像素 ...

  3. asyncio异步IO——Streams详解

    前言 本文翻译自python3.7官方文档--asyncio-stream,译者马鸣谦,邮箱 1612557569@qq.com.转载请注明出处. 数据流(Streams) 数据流(Streams)是 ...

  4. alloc_page分配内存空间--Linux内存管理(十七)

    1 前景回顾 在内核初始化完成之后, 内存管理的责任就由伙伴系统来承担. 伙伴系统基于一种相对简单然而令人吃惊的强大算法. Linux内核使用二进制伙伴算法来管理和分配物理内存页面, 该算法由Know ...

  5. c/c++ 继承与多态 容器与继承2

    c/c++ 继承与多态 容器与继承1说明了容器里使用继承关系的方法,这里再弄一个练习,巩固一下. 做一个类Basket,它有个multiset成员,key是智能指针std::shared_ptr< ...

  6. 安装ESXi部署OVF详细步骤

    整个安装部署过程均在个人环境进行.欧克,我们现在开始. 一.安装ESXi 1.Enter回车 2.Enter回车继续 3.F11,接受继续 4.Enter,回车继续(选择安装ESXi的设备) 5.默认 ...

  7. Win10 Service'MongoDB Server' failed to start. Verify that you have sufficient privileges to start system services【简记】

    最近工作中有需要用到 MongoDB数据库,以前用的3.*的版本,这次用的是较新4.0.6的版本,然后去官网下载安装. 安装到一半,就弹出如下提示,说是"MongoDB Server&quo ...

  8. LeetCode算法题-Can Place Flowers(Java实现)

    这是悦乐书的第272次更新,第287篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第140题(顺位题号是605).假设你有一个花坛,其中一些地块是种植的,有些则不是. 然 ...

  9. 个人对JS原型链的一些理解(prototype、__proto__)

    前言 在我一开始学习java web的时候,对JS就一直抱着一种只是简单用用的心态,于是并没有一步一步地去学习,当时认为用法与java类似,但是在实际web项目中使用时却比较麻烦,便直接粗略了解后开始 ...

  10. HTML---标签的分类 | display | visibility

    一.HTML标签的分类和转换 1.1,三类HTML标签 1.2,三类HTML标签的特点 1.3,三类标签的转换--display:none隐藏于visibility不同之处 二.HTML某些标签--不 ...