import org.apache.log4j.{Level, Logger}
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.sql.SparkSession /**
* 逻辑回归
* Created by zhen on 2018/11/20.
*/
object LogisticRegression {
Logger.getLogger("org").setLevel(Level.WARN) // 设置日志级别
def main(args: Array[String]) {
val spark = SparkSession.builder()
.appName("LogisticRegression")
.master("local[2]")
.getOrCreate()
val sqlContext = spark.sqlContext
// 加载训练数据和测试数据
val data = sqlContext.createDataFrame(Seq(
(1.0, Vectors.dense(0.0, 1.1, 0.1)),
(0.0, Vectors.dense(2.0, 1.0, -1.1)),
(1.0, Vectors.dense(1.0, 2.1, 0.1)),
(0.0, Vectors.dense(2.0, -1.3, 1.1)),
(0.0, Vectors.dense(2.0, 1.0, -1.1)),
(1.0, Vectors.dense(1.0, 2.1, 0.1)),
(1.0, Vectors.dense(2.0, 1.3, 1.1)),
(0.0, Vectors.dense(-2.0, 1.0, -1.1)),
(1.0, Vectors.dense(1.0, 2.1, 0.1)),
(0.0, Vectors.dense(2.0, -1.3, 1.1)),
(1.0, Vectors.dense(2.0, 1.0, -1.1)),
(1.0, Vectors.dense(1.0, 2.1, 0.1)),
(0.0, Vectors.dense(-2.0, 1.3, 1.1)),
(1.0, Vectors.dense(0.0, 1.2, -0.4))
))
.toDF("label", "features")
val weights = Array(0.8,0.2) //设置训练集和测试集的比例
val split_data = data.randomSplit(weights) // 拆分训练集和测试集
// 创建逻辑回归对象
val lr = new LogisticRegression()
// 设置参数
lr.setMaxIter(10).setRegParam(0.01)
// 训练模型
val model = lr.fit(split_data(0))
model.transform(split_data(1))
.select("label", "features", "probability", "prediction")
.collect()
.foreach(println(_))
//关闭spark
spark.stop()
}
}

结果:

Spark ML逻辑回归的更多相关文章

  1. Spark LogisticRegression 逻辑回归之建模

    导入包 import org.apache.spark.sql.SparkSession import org.apache.spark.sql.Dataset import org.apache.s ...

  2. Spark 多项式逻辑回归__多分类

    package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{B ...

  3. Spark 多项式逻辑回归__二分类

    package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{L ...

  4. Spark 机器学习------逻辑回归

    package Spark_MLlib import javassist.bytecode.SignatureAttribute.ArrayType import org.apache.spark.s ...

  5. Spark Mllib逻辑回归算法分析

    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3816289.html 本文以spark 1.0.0版本MLlib算法为准进行分析 一.代码结构 逻辑回归 ...

  6. Spark LR逻辑回归中RDD转DF中VectorUDT设置

    System.setProperty("hadoop.home.dir", "C:\\hadoop-2.7.2"); val spark = SparkSess ...

  7. ML 逻辑回归 Logistic Regression

    逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行 ...

  8. 成功秀了一波scala spark ML逻辑斯蒂回归

    1.直接上官方代码,调整过的,方可使用 package com.test import org.apache.spark.{SparkConf, SparkContext} import org.ap ...

  9. Spark LogisticRegression 逻辑回归之简介

    LogisticRegression简介

随机推荐

  1. Linux学习笔记之十一————Linux常用服务器构建之ssh和scp

    一.ssh 1.ssh介绍 SSH为Secure Shell的缩写,由 IETF 的网络工作小组(Network Working Group)所制定:SSH 为建立在应用层和传输层基础上的安全协议. ...

  2. vue 父子组件之间传参

    父组件中有子组件 msg 为父组件向子组件传的内容,  子组件向父组件传参数 子组件:this.$emit("shownumber",[this.num]);//this.$emi ...

  3. 关于iscroll插件的使用

    本次项目有一个需要多信息展示,需要左右滑动的效果,查资料了解到iscroll,就拿来用,如下调用: var myscroll = new IScroll("#wrapper", { ...

  4. CSS 基础:HTML 标记与文档结构(1)<思维导图>

    这段时间利用一下间隙时间学习了CSS的基础知识,主要目的是加深对CSS的理解,虽然个人主要工作基本都是后台开发,但是个人觉得系统学习一下CSS的基础还是很有必要的.下面我学习CSS时做的思维导图(全屏 ...

  5. SVM笔记

    1.前言 SVM(Support Vector Machine)是一种寻求最大分类间隔的机器学习方法,广泛应用于各个领域,许多人把SVM当做首选方法,它也被称之为最优分类器,这是为什么呢?这篇文章将系 ...

  6. AIOps 在腾讯的探索和实践

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由LemonLu发表于云+社区专栏 赵建春 腾讯 技术运营通道主席 腾讯 社交网络运营部助理总经理 AIOps 白皮书核心编写专家 我今 ...

  7. Spark新手入门——1.Scala环境准备

    主要包括以下三部分,本文为第一部分: 一. Scala环境准备 二. Hadoop集群(伪分布模式)安装 查看 三. Spark集群(standalone模式)安装 查看 因Spark任务大多由Sca ...

  8. c# API接受图片文件以文件格式上传图片

    /// 文件图片上传 /// </summary> /// <returns>成功上传返回上传后的文件名</returns> [HttpPost] public a ...

  9. Perfect hashing (And Minimal perfect hashing)

    Perfect Hashing: A hash function that is injective-that is, maps each valid input to a different has ...

  10. 如何把SVG小图片转换为 html字体图表

    自制作的简单字体图表使用案例:查看demo 制作步骤: 1:登录制作工具在线网站 https://icomoon.io/ 2:右上角红色 按钮进入到:https://icomoon.io/app/#/ ...