用Python实现数据结构之二叉搜索树
二叉搜索树
二叉搜索树是一种特殊的二叉树,它的特点是:
对于任意一个节点p,存储在p的左子树的中的所有节点中的值都小于p中的值
对于任意一个节点p,存储在p的右子树的中的所有节点中的值都大于p中的值
一个图例:
基于二叉搜索树的这种关系,我们可以用它来实现有序映射
遍历二叉搜索树
基于二叉搜索树的特性,采用中序遍历的方式可以使得遍历结果是按照从小到大的顺序排列的。了解中序遍历可以参考用Python实现数据结构之树
这里还需要思考的一个内容是在基于中序遍历的前提下,如何求一个节点的后继节点或前驱节点。
显然这就是求比该节点大的下一个节点或比它小的前一个节点。我们拿求后继节点为例:
当该节点有右孩子时,那么后继结点就是右子树中最左边的节点
当该节点没有右孩子时,那么后继节点就是第一个是左孩子的祖先的父节点
算法用伪代码表示为:
def after(p):
"""寻找二叉搜索树的后继节点的伪代码"""
if right(p) is not None:
walk = right(p)
while left(right(p)) is not None: # 找最左
walk = left(walk)
return walk
else:
walk = p
ancestor = parent(walk)
while ancestor is not None and walk == right(ancestor): # 当walk是左孩子时或walk是根节点时停止
walk = ancestor
ancestor = parent(walk)
return ancestor
找前驱同理
搜索
既然叫做二叉搜索树,那它很重要的一个用途就是搜索,搜索的方式为:
与根节点比较,如果相等则根节点就是要搜索的位置
比根节点小,则递归的与左孩子比较
比根节点大,则递归的与有孩子比较
如果最后没找到,则返回最后一个与之比较的节点,意味着可以在这个节点位置插入刚才搜索的值
算法用伪代码表示为:
def search(T,p,k):
"""二叉树搜索的伪代码,k是要搜索的值"""
if k == p.key():
return p
elif k < p.key() and T.left(p) is not None:
return search(T,T.left(p))
elif k > p.key() and T.right(p) is not None:
return search(T,T.right(p))
return p
搜索的时间与高度有关,是O(h),也就是最坏的情况下为O(n),最好的情况下是O(log(n))
插入
插入算法较简单,它依赖于搜索算法,将搜索的返回的位置的值与key进行比较,
如果相等,则就在此位置修改
如果小于返回位置的值,则插入到返回位置的左孩子
如果小于返回位置的值,则插入到返回位置的右孩子
删除
删除操作较为复杂,因为删除的位置可以是任意的位置,设删除的位置为p
如果删除的位置没有孩子,则直接删了就行
如果删除的位置有一个孩子,则删除之后把它的孩子接到它原来的位置上
如果删除的位置有两个孩子,则:
1.先找到位置p的前驱r,前驱在左子树中
2.把p删除,将r代替p
3.把r原来的位置删除
使用前驱的原因是它必然比p的右子树的所有节点小,也必然比除了r的p的左子树的所有节点大
python实现
我们利用二叉树来实现有序映射
class OrderedMap(BinaryTree,MutableMapping):
"""使用二叉搜索树实现的有序映射"""
class _item():
def __init__(self, key, value):
self.key = key
self.value = value
def __eq__(self, other):
return self.key == other.key
def __ne__(self, other):
return self.key != other.key
def __lt__(self, other):
return self.key < other.key
class Position(BinaryTree.Position):
def key(self):
return self.element().key
def value(self):
return self.element().value
BinaryTree是在之前文章中定义的二叉树类,具体参考用Python实现数据结构之树
首先定义了两个内嵌类,一个表示键值项,一个用于封装节点
然后定义些非公开方法用于其他方法使用:
def _subtree_search(self, p, k):
"""搜索算法"""
if k == p.key():
return p
elif k < p.key():
if self.left(p) is not None:
return self._subtree_search(self.left(p), k)
else:
if self.right(p) is not None:
return self._subtree_search(self.right(p), k)
return p
def _subtree_first_position(self, p):
"""返回树的最左节点"""
walk = p
while self.left(walk) is not None:
walk = self.left(walk)
return walk
def _subtree_last_position(self, p):
"""返回树的最右节点"""
walk = p
while self.right(walk) is not None:
walk = self.right(walk)
return walk
下面是一些公开的访问方法:
def first(self):
return self._subtree_first_position(
self.root()) if len(self) > 0 else None
def last(self):
return self._subtree_last_position(
self.root()) if len(self) > 0 else None
def before(self, p):
"""前驱位置"""
if self.left(p):
return self._subtree_last_position(self.left(p))
else:
walk = p
above = self.parent(walk)
while above is not None and walk == self.left(above):
walk = above
above = self.parent(walk)
return above
def after(self, p):
"""后继位置"""
if self.right(p):
return self._subtree_first_position(self.right(p))
else:
walk = p
above = self.parent(walk)
while above is not None and walk == self.right(above):
walk = above
above = self.parent(walk)
return above
def find_position(self,k):
if self.is_empty():
return None
else:
p = self._subtree_search(self.root(),k)
return p
接下来是映射的核心方法:
def __getitem__(self, k):
if self.is_empty():
raise KeyError('Key Error'+repr(k))
else:
p = self._subtree_search(self.root(),k)
if k!=p.key():
raise KeyError('Key Error' + repr(k))
return p.value()
def __setitem__(self, k,v):
if self.is_empty():
leaf = self.add_root(self._Item(k,v))
else:
p = self._subtree_search(self.root(),k)
if p.key() == k:
p.element().value = v
return
else:
item = self._Item(k,v)
if p.key() < k:
leaf = self.add_right(p,item)
else:
leaf = self.add_left(p, item)
def __iter__(self):
p = self.first()
while p is not None:
yield p.key()
p = self.after(p)
def mapdelete(self,p):
if self.left(p) and self.right(p): #两个孩子都有的时候
replacement = self._subtree_last_position(self.left(p)) #用左子树最右位置代替
self.replace(p,replacement.element())
p = replacement
self.delete(p)
def __delitem__(self, k):
if not self.is_empty():
p = self._subtree_search(self.root(),k)
if k == p.key():
self.mapdelete(p)
return
raise KeyError('Key Error' + repr(k))
最后是一些有序映射特有的方法:
def find_min(self):
"""找最小值,返回键值元组"""
if self.is_empty():
return None
else:
p = self.first()
return(p.key(), p.value())
def find_ge(self, k):
"""找第一个大于等于k的键值元组"""
if self.is_empty():
return None
else:
p = self.find_position(k)
if p.key() < k:
p = self.after(p)
return (p.key(), p.value()) if p is not None else None
def find_range(self, start, stop):
if not self.is_empty():
if start is None:
p = self.first()
else:
p = self.find_position(start)
if p.key() < start:
p = self.after(p)
while p is not None and (stop is None or p.key() < stop):
yield (p.key(), p.value())
p = self.after(p)
用Python实现数据结构之二叉搜索树的更多相关文章
- 【算法与数据结构】二叉搜索树的Java实现
为了更加深入了解二叉搜索树,博主自己用Java写了个二叉搜索树,有兴趣的同学可以一起探讨探讨. 首先,二叉搜索树是啥?它有什么用呢? 二叉搜索树, 也称二叉排序树,它的每个节点的数据结构为1个父节点指 ...
- 数据结构之二叉搜索树、AVL自平衡树
前言 最近在帮公司校招~~ 所以来整理一些数据结构方面的知识,这些知识呢,光看一遍理解还是很浅的,看过跟动手做过一遍的同学还是很容易分辨的哟~ 一直觉得数据结构跟算法,就好比金庸小说里的<九阳神 ...
- hdu 3791:二叉搜索树(数据结构,二叉搜索树 BST)
二叉搜索树 Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Total Submiss ...
- 数据结构之二叉搜索树(BST)--JavaScript实现
原理: 叉排序树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉排序树的存储结构.中序遍历二叉排序树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程 ...
- 自己动手实现java数据结构(六)二叉搜索树
1.二叉搜索树介绍 前面我们已经介绍过了向量和链表.有序向量可以以二分查找的方式高效的查找特定元素,而缺点是插入删除的效率较低(需要整体移动内部元素):链表的优点在于插入,删除元素时效率较高,但由于不 ...
- 数据结构-二叉搜索树的js实现
一.树的相关概念 1.基本概念 子树 一个子树由一个节点和它的后代构成. 节点的度 节点所拥有的子树的个数. 树的度 树中各节点度的最大值 节点的深度 节点的深度等于祖先节点的数量 树的高度 树的高度 ...
- 二叉搜索树 - C++ 实现
二叉搜索树 - C++ 实现 概述 Overview 二叉查找树(英语:Binary Search Tree, 后文中简称 BST), 也称为二叉搜索树.有序二叉树(ordered binary tr ...
- 数据结构-二叉搜索树和二叉树排序算法(python实现)
今天我们要介绍的是一种特殊的二叉树--二叉搜索树,同时我们也会讲到一种排序算法--二叉树排序算法.这两者之间有什么联系呢,我们一起来看一下吧. 开始之前呢,我们先来介绍一下如何创建一颗二叉搜索树. 假 ...
- 【数据结构与算法Python版学习笔记】树——平衡二叉搜索树(AVL树)
定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个 ...
随机推荐
- JsExcelXml.js的源码
var JSXmlExcel = { ConvertXmlDoc: function (text) { var xmlDoc = null; try { xmlDoc = new ActiveXObj ...
- Django--CSRF 跨站请求伪造
一.简介 django为用户实现防止跨站请求伪造的功能,通过中间件 django.middleware.csrf.CsrfViewMiddleware 来完成.而对于django中设置防跨站请求伪造功 ...
- 程序员、互联网从业者必读KK凯文凯利三大力作之《失控》总结
- DDD实战进阶第一波(三):开发一般业务的大健康行业直销系统(搭建支持DDD的轻量级框架二)
了解了DDD的好处与基本的核心组件后,我们先不急着进入支持DDD思想的轻量级框架开发,也不急于直销系统需求分析和具体代码实现,我们还少一块, 那就是经典DDD的架构,只有了解了经典DDD的架构,你才能 ...
- JavaScript设计模式----装饰者模式
装饰者模式的定义: 装饰者(decorator)模式能够在不改变对象自身的基础上,在程序运行期间给对像动态的添加职责.与继承相比,装饰者是一种更轻便灵活的做法. 装饰者模式的特点: 可以动态的给某个对 ...
- Eureka编程
在一些场景下,我们需要监听eureka服务中心的一些状态,譬如某个微服务挂掉了,我们希望能监听到,并给管理员发送邮件通知或钉钉告警. 一.Eureka的监听事件,可以用来监控.告警EurekaInst ...
- python 浅析格式化输出和深浅copy
一,格式化输出 今天主要想记录一下关于格式化输出的例子,然后结合了自己的理解,分析如下: 格式是 :百分号+占位符 主要有三种使用形式:%s (其中s表示string)表示字符串 %d (其中d表 ...
- PXE | 开关机
PXE | 开关机流程 linuxPXE 主要阶段 引导的主要6个阶段 从MBR中读取引导加载程序boot loader 加载并初始化内核: 检测和配置设备: 创建内核进程: 系统管理员干预(单用户模 ...
- 四层和七层负载均衡的特点及常用负载均衡Nginx、Haproxy、LVS对比
一.四层与七层负载均衡在原理上的区别 图示: 四层负载均衡与七层负载均衡在工作原理上的简单区别如下图: 概述: 1.四层负载均衡工作在OSI模型中的四层,即传输层.四层负载均衡只能根据报文中目标地址和 ...
- spring cloud config服务器
Spring Cloud Config提供了一种在分布式系统中外部化配置服务器和客户端的支持.配置服务器有一个中心位置,管理所有环境下的应用的外部属性.客户端和服务器映射到相同Spring Event ...