论文笔记:Visual Question Answering as a Meta Learning Task
Visual Question Answering as a Meta Learning Task
ECCV 2018
2018-09-13 19:58:08
1. Introduction:
本文提出一种新的 VQA 思路,将 meta-learning 结合进来,通过支持集的形式(Support Set),让神经网络学会学习。
本文核心的技术贡献是:提供一种顶尖的 VQA模型到 meta-learning 的设定下。the resulting model 是一个深度神经网络,利用 dynamic parameters,也被称为 fast weights,依赖于 support set 在测试时决定的。
the resulting system 的一个能力是:学会产生完全新颖的答案(在 training data 中从未出现的回答)。另外一个能力是处理 rare answers 能力。因为 VQA 是严重的类别不均衡。
本文的贡献是:
1. 将 VQA 看做是 meta-learnig 的问题,在测试时,提供一个 support set 进行模仿;
2. 描述了一个神经网络结构 以及 训练过程,能够结合 meta-learning 的场景;
3. 能够产生新颖的答案。对于 rare answers 能够很好的处理,更好的采样效率;
2. VQA in a Meta Learning Setting :
1)传统的 VQA 模型:
Image I, Question Q, 答案集合 A;
2)拓展到meta-learning 应用场景下:
带有 support set S, the support set S can include novel examples S' provided at test time; S = T U S' ;
3. Proposed Model:
作者将 VQA 系统分为两个部分:第一个部分就是感知,the embedding part that encodes the input question and image;第二个部分就是,the classifier part that handles the reasoning and actural question answering;
3.1. 非线性映射 $f_{theta} (*)$ :
非线性映射的作用是:将问题/图像 h 的 embedding 映射到适合 classifier 的表示(is to map the embedding of the question/image h to a representation suitable for the following classifier)。
我们采用 paper 【34】的设置,利用 a gated hyperbolic tangent layer, 定义为:
其中,$\delta$ 是逻辑激活函数,W, W', b, b' 都是可学习的参数,圆圈代表了元素级相乘。我们将这些参数统一表达为 $\theta$,传统方法就是用 BP 算法以及 梯度下降的方法进行训练,这样他们得到的就是 static 的参数。而本文所提出的方法,在测试的时候,依赖于 the input h 以及 the available support set,自适应的进行参数的调整。具体的,我们利用 static parameter $\theta^s$,以及 测试时候的动态参数 $\theta^d$。其线性组合为: 其中,w 是学习权重的向量。动态权重 可以看做是根据输入 h,对 static weights 进行的调整(the dynamic weights can therefore be seen as an adjustment made to be the static ones depends on the input h)。
候选动态权重的集合,被保留在 associative memory M 中。该 memory 是一个关于 key/value pair 的集合(跟支持集一样大)。在测试的时候,我们从该 memory 中提取出合适的动态权重,通过 soft key matching:
其中,$d_{cos}$ 代表了余弦相似度函数。所以,我们得到的是一个加权的 sum,用的是 输入 h 和 memory keys $h_i^~$ 之间的相似度来加权 the memory values。
Mapping to Candidate Answers :
未完,待遇 。。。
==
论文笔记:Visual Question Answering as a Meta Learning Task的更多相关文章
- 论文阅读:Learning Visual Question Answering by Bootstrapping Hard Attention
Learning Visual Question Answering by Bootstrapping Hard Attention Google DeepMind ECCV-2018 2018 ...
- 【自然语言处理】--视觉问答(Visual Question Answering,VQA)从初始到应用
一.前述 视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务.这一任务的定义如下: A VQA system takes as inp ...
- Hierarchical Question-Image Co-Attention for Visual Question Answering
Hierarchical Question-Image Co-Attention for Visual Question Answering NIPS 2016 Paper: https://arxi ...
- Visual Question Answering with Memory-Augmented Networks
Visual Question Answering with Memory-Augmented Networks 2018-05-15 20:15:03 Motivation: 虽然 VQA 已经取得 ...
- Learning Conditioned Graph Structures for Interpretable Visual Question Answering
Learning Conditioned Graph Structures for Interpretable Visual Question Answering 2019-05-29 00:29:4 ...
- 论文笔记系列-Neural Architecture Search With Reinforcement Learning
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上 ...
- 论文笔记:Deep Attentive Tracking via Reciprocative Learning
Deep Attentive Tracking via Reciprocative Learning NIPS18_tracking Type:Tracking-By-Detection 本篇论文地主 ...
- 论文笔记:(CVPR2017)PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
目录 一. 存在的问题 二. 解决的方案 1.点云特征 2.解决方法 三. 网络结构 四. 理论证明 五.实验效果 1.应用 (1)分类: ModelNet40数据集 (2)部件分割:ShapeNet ...
- 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google 2016.10.06 官方 ...
随机推荐
- react better-scroll 编写类似手机chrome的header显示隐藏效果
关键代码 const H = 50; // header的高度 const H2 = H / 2; let cy = 0; class Home extends Component { @observ ...
- 19. vue的原理
vue:原理1 => Object.defineProperty 当你把一个普通的 JavaScript 对象传给 Vue 实例的 data 选项,Vue 将遍历此对象所有的属性,并使用 Obj ...
- 记一次maven的包冲突经历
上周工作遇到一个特别棘手的bug,花了我一天时间去搞. 事情是这样的,打包那边的同事过来跟我说我的项目无法运行自动打包,卡在maven package上面,报错为:[error]未经检查的异常,需要捕 ...
- ajax里的status和readystate
先看ajax封装函数 function ajaxFunc(method,url,data,callback) { var xhr; if (XMLHttpRequest) { xhr = new XM ...
- python中文分词库——pyltp
pyltp在win10下安装比较麻烦,因此参考以下安装方式, 1.下载 win10下python3.6 2.安装 下载好了以后, 在命令行下, cd到wheel文件所在的目录, 然后使用命令pip i ...
- mysql 锁查询
1.查看正在被锁定的的表 show OPEN TABLES where In_use > 0; in_use:多少个线程在使用 name_locked:是否被锁 2.查询哪些线程正在运行. 这个 ...
- layui中的submit提交本地数据在控制在输出为空数组(解决)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 代码中特殊的注释技术——TODO、FIXME和XXX的用处(转)
1.声明 本篇转自博客:http://blog.csdn.net/reille/ 2.转载内容 2.1.前言 今天在阅读 Qt Creator 的源代码时,发现一些注释中有 FIXME 英文单词,用英 ...
- Navicat 远程连接 Oracle11g 数据库报错 No listener 的问题
1.首先确认已经启动 OracleOraDb11g_home1TNSListener 服务时,仍无法连接: 2.进入计算机系统属性中查看 Oracle 服务端计算机的全名: 3.进入 Orac ...
- 20190412 T-SQL语言一
-- T-SQL ------------------------------------------------------ 例如1 什么是注释符 单行注释select *from kc /*sel ...