E - Closest Common Ancestors
Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)
Input
The data set, which is read from a the std input, starts with the tree description, in the form:
nr_of_vertices
vertex:(nr_of_successors) successor1 successor2 ... successorn
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form:
nr_of_pairs
(u v) (x y) ...
The input file contents several data sets (at least one).
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.
Output
For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times
For example, for the following tree:

Sample Input
5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)
Sample Output
2:1
5:5
Hint
Huge input, scanf is recommended.
输出公共节点的个数(抄的板子有毒..)输入要特殊处理
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define scf(x) scanf("%d",&x)
#define pf printf
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
const ll mod=1e9+100;
const double eps=1e-8;
using namespace std;
const double pi=acos(-1.0);
const int inf=0xfffffff;
const int MAXN = 1010;
int rmq[2*MAXN];//rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[2*MAXN];
int dp[2*MAXN][20];//最小值对应的下标
void init(int n)
{
mm[0] = -1;
for(int i = 1;i <= n;i++)
{
mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
dp[i][0] = i;
}
for(int j = 1; j <= mm[n];j++)
for(int i = 1; i + (1<<j) - 1 <= n; i++)
dp[i][j] = rmq[dp[i][j-1]] < rmq[dp[i+(1<<(j-1))][j-1]]?dp[i][j-1]:dp[i+(1<<(j-1))][j-1];
}
int query(int a,int b)//查询[a,b]之间最小值的下标
{
if(a > b)swap(a,b);
int k = mm[b-a+1];
return rmq[dp[a][k]] <= rmq[dp[b-(1<<k)+1][k]]?dp[a][k]:dp[b-(1<<k)+1][k];
}
};
//边的结构体定义
struct Edge
{
int to,next;
};
Edge edge[MAXN*2];
int tot,head[MAXN];
int F[MAXN*2];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN];//P[i]表示点i在F中第一次出现的位置
int cnt;
ST st;
void init()
{
tot = 0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v)//加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u,int pre,int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for(int i = head[u];i != -1;i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)continue;
dfs(v,u,dep+1);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root,int node_num)//查询LCA前的初始化
{
cnt = 0;
dfs(root,root,0);
st.init(2*node_num-1);
}
int query_lca(int u,int v)//查询u,v的lca编号
{
return F[st.query(P[u],P[v])];
}
bool root[MAXN];
int sum[MAXN];
int main()
{
int n,m,num,x,u;
while(~scf(n))
{
init();
mm(sum,0);
mm(root,true);
rep(i,1,n+1)
{
sf("\t%d\t:\t(\t%d\t)",&u,&num);//一种方法
while(num--)
{
int x;
sf("\t%d\t",&x);
addedge(u,x);
addedge(x,u);
root[x]=false;
}
}
int temp;
rep(i,1,n+1)
{
if(root[i])
{
temp=i;break;
}
}
scf(m);
LCA_init(temp,n);
int v;
while(m--)//另一种输入方法
{
while(getchar()!='(') ;
scanf("%d%d",&u,&v);
while(getchar()!=')') ;
sum[query_lca(u,v)]++;
}
rep(i,1,n+1)
{
if(sum[i])
pf("%d:%d\n",i,sum[i]);
}
}
return 0;
}
E - Closest Common Ancestors的更多相关文章
- POJ 1470 Closest Common Ancestors
传送门 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 17306 Ac ...
- poj----(1470)Closest Common Ancestors(LCA)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 15446 Accept ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
- POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13372 Accept ...
- POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13370 Accept ...
- POJ 1470 Closest Common Ancestors 【LCA】
任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000 ...
- poj1470 Closest Common Ancestors [ 离线LCA tarjan ]
传送门 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 14915 Ac ...
- BNUOJ 1589 Closest Common Ancestors
Closest Common Ancestors Time Limit: 2000ms Memory Limit: 10000KB This problem will be judged on PKU ...
- poj——1470 Closest Common Ancestors
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 20804 Accept ...
- Closest Common Ancestors POJ 1470
Language: Default Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissio ...
随机推荐
- delphi 设置多屏幕
//poScreenCenter时,窗体会显示到主显示器的中央 MainForm.Position := poScreenCenter; function TGAEAMainForm.GetWorkA ...
- performSelector may cause a leak because its selector is unknown
转自:http://www.jianshu.com/p/6517ab655be7 问题 我在 ARC 模式下编译出了这个 warning: "performSelector may caus ...
- Css3 实现循环留言滚动效果(一)
一.常见留言滚动效果示例 html代码 <div class="runList"> <div class="runitem"> < ...
- 小程序longpress的bug及其解决
我的小程序中,用到一个长按修改的功能,设计是这样的,短按tap,长按longpress 但是,偶尔出现长按无效的情况.我自己都经常碰到,今天仔细研究,用半天时间反复寻找,重现,发现问题和内存或别的因素 ...
- How do I remove a particular element from an array in JavaScript?
9090down voteaccepted Find the index of the array element you want to remove, then remove that index ...
- android自己定义控件之飞入飞出控件
近期呢,本人辞职了.在找工作期间.不幸碰到了这个求职淡季,另外还是大学生毕业求职的高峰期,简历发了无数份却都石沉大海.宝宝心里那是一个苦啊! 翻着过去的代码,本人偶然找到了一个有意思的控件.那时本人还 ...
- linux性能压测工具
http://benjr.tw/532 http://blog.yufeng.info/archives/2023 https://www.cnblogs.com/zhoujinyi/archive/ ...
- springcloud如何实现服务的平滑发布
在之前的文章中我们提到服务的优雅下线,见: SpringCloud服务如何在Eureka安全优雅的下线 但这个对于ribbon调用其实是不平滑的,shutdown请求到后服务就马上关闭了,服务消费此时 ...
- MongoDB存储过程创建和使用一例
mongo的脚本是js语法,所以存储过程也是js语法. 创建: db.system.js.save( { _id: "saveAndCount", value : function ...
- 关于inodes占用100%解决方法
df -i; 发现inode节点占满: 这个时候如果不知道哪儿节点占用多可以用下边的脚本进行检查,查看到底哪个目录下面的文件最多: for i in /*; do echo $i; find $i | ...