E - Closest Common Ancestors
Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)
Input
The data set, which is read from a the std input, starts with the tree description, in the form:
nr_of_vertices
vertex:(nr_of_successors) successor1 successor2 ... successorn
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form:
nr_of_pairs
(u v) (x y) ...
The input file contents several data sets (at least one).
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.
Output
For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times
For example, for the following tree:
Sample Input
5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)
Sample Output
2:1
5:5
Hint
Huge input, scanf is recommended.
输出公共节点的个数(抄的板子有毒..)输入要特殊处理
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define scf(x) scanf("%d",&x)
#define pf printf
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
const ll mod=1e9+100;
const double eps=1e-8;
using namespace std;
const double pi=acos(-1.0);
const int inf=0xfffffff;
const int MAXN = 1010;
int rmq[2*MAXN];//rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[2*MAXN];
int dp[2*MAXN][20];//最小值对应的下标
void init(int n)
{
mm[0] = -1;
for(int i = 1;i <= n;i++)
{
mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
dp[i][0] = i;
}
for(int j = 1; j <= mm[n];j++)
for(int i = 1; i + (1<<j) - 1 <= n; i++)
dp[i][j] = rmq[dp[i][j-1]] < rmq[dp[i+(1<<(j-1))][j-1]]?dp[i][j-1]:dp[i+(1<<(j-1))][j-1];
}
int query(int a,int b)//查询[a,b]之间最小值的下标
{
if(a > b)swap(a,b);
int k = mm[b-a+1];
return rmq[dp[a][k]] <= rmq[dp[b-(1<<k)+1][k]]?dp[a][k]:dp[b-(1<<k)+1][k];
}
};
//边的结构体定义
struct Edge
{
int to,next;
};
Edge edge[MAXN*2];
int tot,head[MAXN];
int F[MAXN*2];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN];//P[i]表示点i在F中第一次出现的位置
int cnt;
ST st;
void init()
{
tot = 0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v)//加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u,int pre,int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for(int i = head[u];i != -1;i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)continue;
dfs(v,u,dep+1);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root,int node_num)//查询LCA前的初始化
{
cnt = 0;
dfs(root,root,0);
st.init(2*node_num-1);
}
int query_lca(int u,int v)//查询u,v的lca编号
{
return F[st.query(P[u],P[v])];
}
bool root[MAXN];
int sum[MAXN];
int main()
{
int n,m,num,x,u;
while(~scf(n))
{
init();
mm(sum,0);
mm(root,true);
rep(i,1,n+1)
{
sf("\t%d\t:\t(\t%d\t)",&u,&num);//一种方法
while(num--)
{
int x;
sf("\t%d\t",&x);
addedge(u,x);
addedge(x,u);
root[x]=false;
}
}
int temp;
rep(i,1,n+1)
{
if(root[i])
{
temp=i;break;
}
}
scf(m);
LCA_init(temp,n);
int v;
while(m--)//另一种输入方法
{
while(getchar()!='(') ;
scanf("%d%d",&u,&v);
while(getchar()!=')') ;
sum[query_lca(u,v)]++;
}
rep(i,1,n+1)
{
if(sum[i])
pf("%d:%d\n",i,sum[i]);
}
}
return 0;
}
E - Closest Common Ancestors的更多相关文章
- POJ 1470 Closest Common Ancestors
传送门 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 17306 Ac ...
- poj----(1470)Closest Common Ancestors(LCA)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 15446 Accept ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
- POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13372 Accept ...
- POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13370 Accept ...
- POJ 1470 Closest Common Ancestors 【LCA】
任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000 ...
- poj1470 Closest Common Ancestors [ 离线LCA tarjan ]
传送门 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 14915 Ac ...
- BNUOJ 1589 Closest Common Ancestors
Closest Common Ancestors Time Limit: 2000ms Memory Limit: 10000KB This problem will be judged on PKU ...
- poj——1470 Closest Common Ancestors
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 20804 Accept ...
- Closest Common Ancestors POJ 1470
Language: Default Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissio ...
随机推荐
- Spring(1)—初识
Spring是一个开放源代码的设计层面框架,他解决的是业务逻辑层和其他各层的松耦合问题,因此它将面向接口的编程思想贯穿整个系统应用. 特点: 轻量--从大小与开销两方面而言Spring都是轻量的. 控 ...
- 1、html基础认识&常用标签(1)
从今天期我们进入前端的学习,先学习html,没有任何复杂难懂的逻辑需要烧脑,只需要记忆.练习.练习.练习. 本篇导航: HTML初识 常用标签介绍 <body>内常用标签 一.HTML初识 ...
- Collection was modified; enumeration operation may not execute Dictionary 集合已修改;可能无法执行枚举操作
public void ForeachDic() { Dictionary dic = new Dictionary(); dic.Add("1", 10); dic.Add(&q ...
- 创建MySQL用户 赋予某指定库表的权限
摘自: http://renxiangzyq.iteye.com/blog/763837 update ERROR 1364 (HY000): Field 'ssl_cipher' doesn't h ...
- javascript 生成MD5加密
进行HTTP网络通信的时候,调用API向服务器请求数据,有时为了防止API调用过程中被黑客恶意篡改,所请求参数需要进行MD5算法计算,得到摘要签名.服务端会根据请求参数,对签名进行验证,签名不合法的请 ...
- SSH + Google Authenticator 安全加固
1. SSH连接 Secure Shell(安全外壳协议,简称SSH)是一种加密的网络传输协议,可在不安全的网络中为网络服务提供安全的传输环境.SSH通过在网络中创建安全隧道来实现SSH客户端与服务器 ...
- git submodule使用的笔记
git submodule 子模块的应用: 以下为使用流程的一些笔记: 1. 首先你的工作区 mainPJ cd mainPJ git init echo "this is mainPJ&q ...
- 自动化中app支持schema跳转
android schema: String url = "adb -s " + udid + " shell am start -a 'android.intent.a ...
- 关于Docker目录挂载的总结(转)
关于Docker目录挂载的总结 Docker容器启动的时候,如果要挂载宿主机的一个目录,可以用-v参数指定. 譬如我要启动一个centos容器,宿主机的/test目录挂载到容器的/soft目录,可通过 ...
- Effective Java 第三版笔记(目录)
<Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将近8年的时 ...