来自蒟蒻 \(Hero \_of \_Someone\) 的 \(LCT\) 学习笔记
$
$
又是一道骚题......
先讲一个结论:
假设我们用 \(LCT\) 来做这道题, 在插入边 \(i\) 的时候如果遇到了环, 则将环上最早加入的那条边删掉, 并插入边 \(i\),
记 \(cnm [i]\) 为被删除边的编号, 如果插入边 \(i\) 时没有遇到环, 则记 \(cnm[i]=0\).
那么, 每一个询问的答案即为, \(n\ -\ [l,r]中小于\ l\ 的\ cnm[i]\ 的个数\).
$
$
证明:
假设加入边 \(i\) 后形成的的环上没有 \(i\) 和 \(cnm[i]\) 这两条边, 那么这个环将变成两个连通块,
而在加入 \(i\) 且 \(cnm[i]<l\) (即在该询问中, \(cnm[i]\) 并不存在于图中)时, 这两个连通块变成了一个连通块, 即连通块数量 \(-1\) ,
所以 \([l,r]\) 中小于 \(l\) 的 \(cnm[i]\) 的个数即为减少的连通块数量, 得证.
$
$
所以这道题的做法就出来了, 用 \(LCT\) 来求 \(cnm[]\) , 主席树或者树套树维护 \([l,r]\) 中小于 \(l\) 的 \(cnm[i]\) 的个数
$
$

//made by Hero_of_Someone
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define N (400010)
#define RG register
using namespace std;
inline int gi(){ RG int x=0,q=1; RG char ch=getchar(); while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
  if(ch=='-') q=-1,ch=getchar(); while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=getchar(); return q*x; }
void File(){freopen(".in","r",stdin);freopen(".out","w",stdout);}

int n,m,k,type,cnm[N];
struct Edge{int u,v;}E[N],e[N];
//------------ lct -----------------------------
int ch[N][2],fa[N],rev[N];
int val[N],Min[N];

inline void cur(int x,int y){ val[x]=Min[x]=y; }

inline void up(int x){
  Min[x]=min(Min[ch[x][0]],Min[ch[x][1]]);
  Min[x]=min(Min[x],val[x]);
}

inline void reverse(int x){
  if(!x) return ;
  swap(ch[x][0],ch[x][1]);
  rev[x]^=1;
}

inline void down(int x){
  if(!rev[x]) return ;
  reverse(ch[x][0]);
  reverse(ch[x][1]);
  rev[x]=0;
}

inline bool is_root(int x){ return ch[fa[x]][0]!=x && x!=ch[fa[x]][1]; }

inline bool lr(int x){ return x==ch[fa[x]][1]; }

inline void rotate(int x){
  RG int y=fa[x],z=fa[y],k=lr(x);
  if(!is_root(y)) ch[z][lr(y)]=x;
  fa[x]=z; fa[ch[x][k^1]]=y; fa[y]=x;
  ch[y][k]=ch[x][k^1]; ch[x][k^1]=y;
  up(y); up(x);
}

int st[N];
inline void splay(int x){
  RG int y=x,top=0;
  while(1){
    st[++top]=y;
    if(is_root(y)) break;
    y=fa[y];
  }
  for(RG int i=top;i;i--) down(st[i]);
  while(!is_root(x)){
    if(!is_root(fa[x])) rotate(lr(x)^lr(fa[x])?x:fa[x]);
    rotate(x);
  }
}

inline void access(int x){
  RG int y=0;
  while(x){ splay(x);
    ch[x][1]=y; fa[y]=x;
    up(x); y=x; x=fa[x];
  }
}

inline void make_root(int x){
  access(x); splay(x); reverse(x);
}

inline int query(int x,int y){
  make_root(x); access(y); splay(y);
  return Min[y];
}

inline int find(int x){
  while(fa[x]) x=fa[x];
  return x;
}

inline void link(int x,int y){
  if(find(x)==find(y)) return ;
  make_root(x); fa[x]=y;
}

inline void cut(int x,int y){
  make_root(x); access(y); splay(y);
  if(ch[y][0]==x) y=0,fa[x]=0,up(y);
}

inline void Insert(int id){
  RG int x=e[id].u,y=e[id].v;
  if(x==y){ cnm[id]=m+1; return ; }
  if(find(x)==find(y)){
    RG int tmp=query(x,y);
    cnm[id]=tmp;
    cut(e[tmp].u,n+tmp);
    cut(e[tmp].v,n+tmp);
  }
  cur(n+id,id);
  link(x,n+id);
  link(y,n+id);
}

inline void init(){
  n=gi(),m=gi(),k=gi(),type=gi();
  for(RG int i=0;i<=n;i++) cur(i,m+1);
  for(RG int i=1;i<=m;i++){
    e[i].u=gi(),e[i].v=gi();
    Insert(i);
  }
}

//------------ 主席树 --------------------------

int ans,cnt,A[N];
int sz,rt[N],sum[N*20];
int ls[N*20],rs[N*20];
inline void build(int& x,int y,int l,int r,int v){
  x=++sz;
  if(l==r){ sum[x]=sum[y]+1; return ; }
  RG int mid=(l+r)>>1;
  if(v<=A[mid]){ rs[x]=rs[y];
    build(ls[x],ls[y],l,mid,v);
  }
  else{ ls[x]=ls[y];
    build(rs[x],rs[y],mid+1,r,v);
  }
  sum[x]=sum[ls[x]]+sum[rs[x]];
}

inline int query(int x,int y,int l,int r,int v){
  if(l==r){ return A[l]<=v?sum[x]-sum[y]:0; }
  RG int mid=(l+r)>>1,ret=sum[ls[x]]-sum[ls[y]];
  if(v<=A[mid]) return query(ls[x],ls[y],l,mid,v);
  else return query(rs[x],rs[y],mid+1,r,v)+ret;
}

//----------------------------------------------

inline void work(){
  for(RG int i=1;i<=m;i++) A[i]=cnm[i];
  sort(A+1,A+m+1); A[0]=-1;
  for(RG int i=1;i<=m;i++)
    if(A[i]!=A[cnt]) A[++cnt]=A[i];
  if(A[cnt]<m+1) A[++cnt]=m+1;
  for(RG int i=1;i<=m;i++)
    build(rt[i],rt[i-1],1,cnt,cnm[i]);
  while(k--){
    RG int l=gi(),r=gi();
    if(type) l^=ans,r^=ans;
    ans=n-query(rt[r],rt[l-1],1,cnt,l-1);
    printf("%d\n",ans);
  }
}

int main(){ init(); work(); return 0; }

沉迷Link-Cut tree无法自拔之:[BZOJ3514] Codechef MARCH14 GERALD07 加强版的更多相关文章

  1. 【LCT+主席树】BZOJ3514 Codechef MARCH14 GERALD07加强版

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2023  Solved: 778 ...

  2. [BZOJ3514]CodeChef MARCH14 GERALD07加强版(LCT+主席树)

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2177  Solved: 834 ...

  3. bzoj3514 Codechef MARCH14 GERALD07加强版 lct预处理+主席树

    Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1951  Solved: 746[Submi ...

  4. BZOJ3514 : Codechef MARCH14 GERALD07加强版

    以边编号为权值 用Link-cut Tree维护最大生成树 对于新加的第i条边(u,v) a[i]表示当a[i]这条边加入后连通块个数会减少 若u==v则a[i]=m 若u与v不连通则连上,a[i]= ...

  5. BZOJ3514 Codechef MARCH14 GERALD07加强版 LCT

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3514 题意概括 N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. N ...

  6. BZOJ3514: Codechef MARCH14 GERALD07加强版【LCT】【主席树】【思维】

    Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. Input 第一行四个整数N.M.K.type,代表点数.边数.询问数以及询问是否加密. 接下来 ...

  7. BZOJ3514: Codechef MARCH14 GERALD07加强版(LCT,主席树)

    Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. Input 第一行四个整数N.M.K.type,代表点数.边数.询问数以及询问是否加密.接下来M ...

  8. BZOJ3514 Codechef MARCH14 GERALD07加强版 LCT+可持久化线段树

    自己独自想出来并切掉还是很开心的~ Code: #include <bits/stdc++.h> #define N 400005 #define inf 1000000000 #defi ...

  9. BZOJ3514 Codechef MARCH14 GERALD07加强版 LCT维护最大生成树 主席树

    题面 考虑没有询问,直接给你一个图问联通块怎么做. 并查集是吧. 现在想要动态地做,那么应该要用LCT. 考虑新加进来一条边,想要让它能够减少一个联通块的条件就是现在边的两个端点还没有联通. 如果联通 ...

随机推荐

  1. 微软官方的Excel android 移动版的折腾

    微软官方的Excel android 移动版,有重大bug.害我折腾了一天多时间.最终确认是Excel自身的问题. 现象描述:手机上新建或是保存excel后.放到电脑上,不能打开.提示”Excel在B ...

  2. 截取字符串中最后一个中文词语(MS SQL)

    有朋友需求一个问题,就是处理一张表中某一字段,从这个字段中去截取内容中最后一个中文词语. ID SourceText Result 1 张达:U:1杨英苹:U:1,周忱:U:1,;苗桥:U:1,章玮: ...

  3. [Oracle]跨DBLINK的JOIN查询的数据库缓存问题15783452141

    客户问到跨DBLINK,结合本地表和远端表的时候,数据在哪一边 的 Data Buffer 缓存. 测试的结果是:本地表在本地缓存,远端表在远端缓存. ####Testcase-0929-10 本地数 ...

  4. 【适配整理】Android 7.0 调取系统相机崩溃解决android.os.FileUriExposedException

    一.写在前面 最近由于廖子尧忙于自己公司的事情和 OkGo (一款专注于让网络请求更简单的网络框架) ,故让LZ 接替维护 ImagePicker(一款支持单.多选.旋转和裁剪的图片选择器),也是处理 ...

  5. Item 9: 比起typedef更偏爱别名声明(alias declaration)

    本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 我确信我们都同意使用STL容器是一个好主意,并且我希望在Item ...

  6. 谈谈css伪类与伪元素

    前端er们大都或多或少地接触过CSS伪类和伪元素,比如最常见的:focus.:hover以及<a>标签的:link.:visited等,伪元素较常见的比如:before.:after等. ...

  7. Html5计算MD5值

    教程: http://www.tuicool.com/articles/InEBNz 组件: https://github.com/satazor/js-spark-md5

  8. 词频统计 List Array

    c# 使用数组进行词频统计 1.先考虑要是使用的数据结构: Array在在内存中是连续存储的,所以它的索引速度非常快,而且赋值与修改元素也很简单,但是数组存在一些不足的地方.在数组的两个数据间插入数据 ...

  9. BugPhobia开发终结篇章:Beta阶段第XI次Scrum Meeting

    0x01 :Scrum Meeting基本摘要 Beta阶段第十一次Scrum Meeting 敏捷开发起始时间 2015/01/06 00:00 A.M. 敏捷开发终止时间 2016/01/10 0 ...

  10. Daily Scrumming* 2015.12.18(Day 10)

    一.团队scrum meeting照片 二.成员工作总结 姓名 任务ID 迁入记录 江昊 任务1085 https://github.com/buaaclubs-team/temp-front/com ...