基本数值运算

  • 除法和模运算符(/,//,%)现在匹配 Python(flooring)语义。这也适用于 [tf.div] 和 [tf.mod]。要获取基于强制整数截断的行为,可以使用 [tf.truncatediv] 和 [tf.truncatemod]。

  • 现在推荐使用 [tf.divide()] 作为除法函数。[tf.div()] 将保留,但它的语义不会回应 Python 3 或 [from future] 机制

  • [tf.mul,tf.sub ] 和 [tf.neg] 不再使用,改为 [tf.multiply],[tf.subtract] 和 [tf.negative]。
  • tf.complex_abs已从Python界面中删除。 tf.abs支持复杂张量,现在应该使用 tf.abs。

tensorboard相关

  • 分别替换tf.scalar_summary,tf.histogram_summary,tf.audio_summary,tf.image_summary与tf.summary.scalar,tf.summary.histogram,tf.summary.audio,tf.summary.image。新的摘要ops以名字而不是标签作为它们的第一个参数,意味着摘要ops现在尊重TensorFlow名称范围。

  • 使用tf.summary.FileWriter和tf.summary.FileWriterCache替换tf.train.SummaryWriter和tf.train.SummaryWriterCache。

参数名修改

以下Python函数的参数在引用特定域时,全部改为使用 [axis]。目前仍将保持旧的关键字参数的兼容性,但计划在 1.0 最终版完成前删除。

  • tf.argmax: dimension 变为 axis

  • tf.argmin: dimension 变为 axis

  • tf.count_nonzero: reduction_indices 变为 axis

  • tf.expand_dims: dim 变为 axis

  • tf.reduce_all: reduction_indices 变为 axis

  • tf.reduce_any: reduction_indices 变为 axis

  • tf.reduce_join: reduction_indices 变为 axis

  • tf.reduce_logsumexp: reduction_indices 变为 axis

  • tf.reduce_max: reduction_indices 变为 axis

  • tf.reduce_mean: reduction_indices 变为 axis

  • tf.reduce_min: reduction_indices 变为 axis

  • tf.reduce_prod: reduction_indices 变为 axis

  • tf.reduce_sum: reduction_indices 变为 axis

  • tf.reverse_sequence: batch_dim 变为 batch_axis, seq_dim 变为 seq_axis

  • tf.sparse_concat: concat_dim 变为 axis

  • tf.sparse_reduce_sum: reduction_axes 变为 axis

  • tf.sparse_reduce_sum_sparse: reduction_axes 变为 axis

  • tf.sparse_split: split_dim 变为 axis

其他

其他暂时接触不多的API修改

  • TensorFlow / models已经被移动到一个单独的github库。

  • tf.reverse() 现在取轴的索引要反转。例如 [tf.reverse(a,[True,False,True])] 现在必须写为 [tf.reverse(a,[0,2])]。 [tf.reverse_v2()] 将保持到 TensorFlow 1.0 最终版。

  • [tf.pack] 和 [tf.unpack] 弃用,改为 [tf.stack] 和 [tf.unstack]。

  • [TensorArray.pack] 和 [TensorArray.unpack] 在弃用过程中,将来计划启用 [TensorArray.stack] 和 [TensorArray.unstack]。

  • tf.listdiff 已重命名为 tf.setdiff1d 以匹配 NumPy 命名。

  • tf.inv 已被重命名为 tf.reciprocal(组件的倒数),以避免与 np.inv 的混淆,后者是矩阵求逆。

  • tf.round 现在使用 banker 的舍入(round to even)语义来匹配 NumPy。

  • tf.split现在以相反的顺序并使用不同的关键字接受参数。我们现在将NumPy order 匹配为tf.split(value,num_or_size_splits,axis)。

  • tf.sparse_split现在采用相反顺序的参数,并使用不同的关键字。我们现在将NumPy order 匹配为tf.sparse_split(sp_input,num_split,axis)。注意:我们暂时要求 tf.sparse_split 需要关键字参数。

  • tf.concat现在以相反的顺序并使用不同的关键字接受参数。特别地,我们现在将NumPy order匹配为tf.concat(values,axis,name)。

  • 默认情况下,tf.image.decode_jpeg使用更快的DCT方法,牺牲一点保真度来提高速度。通过指定属性dct_method ='INTEGER_ACCURATE',可以恢复到旧版行为。

  • Template.var_scope属性重命名为.variable_scope

  • SyncReplicasOptimizer已删除,SyncReplicasOptimizerV2重命名为SyncReplicasOptimizer。

  • tf.zeros_initializer()和tf.ones_initializer()现在返回一个必须用initializer参数调用的可调用值,在代码中用tf.zeros_initializer()替换tf.zeros_initializer。

  • SparseTensor.shape已重命名为SparseTensor.dense_shape。与SparseTensorValue.shape相同。

  • 从公共API中删除RegisterShape。使用C++形状函数注册。

  • Python API 中的 _ref dtypes 已经弃用。

  • 在C++ API(in tensorflow/cc)中,Input,Output等已经从tensorflow::ops命名空间移动到tensorflow。

  • 将{softmax,sparse_softmax,sigmoid} _cross_entropy_with_logits的arg order更改为(labels,predictions),并强制使用已命名的args。

『TensorFlow』0.x_&_1.x版本框架改动汇总的更多相关文章

  1. 『TensorFlow』TFR数据预处理探究以及框架搭建

    一.TFRecord文件书写效率对比(单线程和多线程对比) 1.准备工作 # Author : Hellcat # Time : 18-1-15 ''' import os os.environ[&q ...

  2. 『TensorFlow』第三弹_可视化框架介绍_悄悄问圣僧

    添加记录节点 -> 汇总记录节点 -> run汇总节点 -> [书写器生成]书写入文件 [-> 刷新缓冲区] 可视化关键点: 注意, 1.with tf.name_scope( ...

  3. 『TensorFlow』专题汇总

    TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...

  4. 『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍

    一.论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feat ...

  5. 『TensorFlow』模型保存和载入方法汇总

    『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...

  6. 『TensorFlow』命令行参数解析

    argparse很强大,但是我们未必需要使用这么繁杂的东西,TensorFlow自己封装了一个简化版本的解析方式,实际上是对argparse的封装 脚本化调用tensorflow的标准范式: impo ...

  7. 『TensorFlow』SSD源码学习_其五:TFR数据读取&数据预处理

    Fork版本项目地址:SSD 一.TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dat ...

  8. 『TensorFlow』滑动平均

    滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.Ex ...

  9. 『TensorFlow』读书笔记_降噪自编码器

    『TensorFlow』降噪自编码器设计  之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Aut ...

随机推荐

  1. Qt自定义界面

    https://blog.csdn.net/zhangxiaoyu_sy/article/details/78925221

  2. 【Python全栈-后端开发】Django入门基础-2

    Django入门基础知识-2 一 .模版 一.模版的组成 HTML代码+逻辑控制代码 二.逻辑控制代码的组成 1  变量(使用双大括号来引用变量) {{var_name}} 2  标签(tag)的使用 ...

  3. airsim 无法打开包括文件corecrt.h

    原因: 显示无法打开包括文件corecrt.h.在网上找了很多方法,最后综合起来发现,这个问题网上很多人反映,应该是vs2015的一个BUG,如果是选择"从父级或项目默认设置继承" ...

  4. [面试题]vi/vim快捷键及面试题系列

    选择 vi保存退出命令 w! wq! q! www vi移动光标到文件最后一行 G g ggg 4444 vi删除一行的命令 dd d D shift+4 在vi编辑器中的命令模式下,键入()可在光标 ...

  5. C#-MVC-Razor视图引擎及解决路径问题的三个方法

    Razor 视图引擎 与Aspx开发区别在于代码: 1.Razor 更智能,摒弃了<%%>格式,直接用@符号开启cs代码,遇到html时自动识别 2.遇到如汉字等即非cs代码,又非html ...

  6. TCP三次握手--syn攻击

    TCP握手协议 在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接.第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确 ...

  7. canutils上板测试问题记录

    ltp-ddt运行can_loopback时出错 pan(1881): Must supply a file collection or a command 原因runtest/ddt/can_loo ...

  8. Shiro权限管理框架

    一.Shiro介绍 Apache Shiro 是Java 的一个安全框架.Shiro 可以非常容易的开发出足够好的应用,其不仅可以用在JavaSE 环境,也可以用在JavaEE 环境.Shiro 可以 ...

  9. jQuery 查找元素2

    jQuery 查找元素2 :first <ul> <li>list item 1</li> <li>list item 2</li> < ...

  10. Python RabbitMQ消息队列

    python内的队列queue 线程 queue:不同线程交互,不能夸进程 进程 queue:只能用于父进程与子进程,或者同一父进程下的多个子进程,进行交互 注:不同的两个独立进程是不能交互的.   ...