基本数值运算

  • 除法和模运算符(/,//,%)现在匹配 Python(flooring)语义。这也适用于 [tf.div] 和 [tf.mod]。要获取基于强制整数截断的行为,可以使用 [tf.truncatediv] 和 [tf.truncatemod]。

  • 现在推荐使用 [tf.divide()] 作为除法函数。[tf.div()] 将保留,但它的语义不会回应 Python 3 或 [from future] 机制

  • [tf.mul,tf.sub ] 和 [tf.neg] 不再使用,改为 [tf.multiply],[tf.subtract] 和 [tf.negative]。
  • tf.complex_abs已从Python界面中删除。 tf.abs支持复杂张量,现在应该使用 tf.abs。

tensorboard相关

  • 分别替换tf.scalar_summary,tf.histogram_summary,tf.audio_summary,tf.image_summary与tf.summary.scalar,tf.summary.histogram,tf.summary.audio,tf.summary.image。新的摘要ops以名字而不是标签作为它们的第一个参数,意味着摘要ops现在尊重TensorFlow名称范围。

  • 使用tf.summary.FileWriter和tf.summary.FileWriterCache替换tf.train.SummaryWriter和tf.train.SummaryWriterCache。

参数名修改

以下Python函数的参数在引用特定域时,全部改为使用 [axis]。目前仍将保持旧的关键字参数的兼容性,但计划在 1.0 最终版完成前删除。

  • tf.argmax: dimension 变为 axis

  • tf.argmin: dimension 变为 axis

  • tf.count_nonzero: reduction_indices 变为 axis

  • tf.expand_dims: dim 变为 axis

  • tf.reduce_all: reduction_indices 变为 axis

  • tf.reduce_any: reduction_indices 变为 axis

  • tf.reduce_join: reduction_indices 变为 axis

  • tf.reduce_logsumexp: reduction_indices 变为 axis

  • tf.reduce_max: reduction_indices 变为 axis

  • tf.reduce_mean: reduction_indices 变为 axis

  • tf.reduce_min: reduction_indices 变为 axis

  • tf.reduce_prod: reduction_indices 变为 axis

  • tf.reduce_sum: reduction_indices 变为 axis

  • tf.reverse_sequence: batch_dim 变为 batch_axis, seq_dim 变为 seq_axis

  • tf.sparse_concat: concat_dim 变为 axis

  • tf.sparse_reduce_sum: reduction_axes 变为 axis

  • tf.sparse_reduce_sum_sparse: reduction_axes 变为 axis

  • tf.sparse_split: split_dim 变为 axis

其他

其他暂时接触不多的API修改

  • TensorFlow / models已经被移动到一个单独的github库。

  • tf.reverse() 现在取轴的索引要反转。例如 [tf.reverse(a,[True,False,True])] 现在必须写为 [tf.reverse(a,[0,2])]。 [tf.reverse_v2()] 将保持到 TensorFlow 1.0 最终版。

  • [tf.pack] 和 [tf.unpack] 弃用,改为 [tf.stack] 和 [tf.unstack]。

  • [TensorArray.pack] 和 [TensorArray.unpack] 在弃用过程中,将来计划启用 [TensorArray.stack] 和 [TensorArray.unstack]。

  • tf.listdiff 已重命名为 tf.setdiff1d 以匹配 NumPy 命名。

  • tf.inv 已被重命名为 tf.reciprocal(组件的倒数),以避免与 np.inv 的混淆,后者是矩阵求逆。

  • tf.round 现在使用 banker 的舍入(round to even)语义来匹配 NumPy。

  • tf.split现在以相反的顺序并使用不同的关键字接受参数。我们现在将NumPy order 匹配为tf.split(value,num_or_size_splits,axis)。

  • tf.sparse_split现在采用相反顺序的参数,并使用不同的关键字。我们现在将NumPy order 匹配为tf.sparse_split(sp_input,num_split,axis)。注意:我们暂时要求 tf.sparse_split 需要关键字参数。

  • tf.concat现在以相反的顺序并使用不同的关键字接受参数。特别地,我们现在将NumPy order匹配为tf.concat(values,axis,name)。

  • 默认情况下,tf.image.decode_jpeg使用更快的DCT方法,牺牲一点保真度来提高速度。通过指定属性dct_method ='INTEGER_ACCURATE',可以恢复到旧版行为。

  • Template.var_scope属性重命名为.variable_scope

  • SyncReplicasOptimizer已删除,SyncReplicasOptimizerV2重命名为SyncReplicasOptimizer。

  • tf.zeros_initializer()和tf.ones_initializer()现在返回一个必须用initializer参数调用的可调用值,在代码中用tf.zeros_initializer()替换tf.zeros_initializer。

  • SparseTensor.shape已重命名为SparseTensor.dense_shape。与SparseTensorValue.shape相同。

  • 从公共API中删除RegisterShape。使用C++形状函数注册。

  • Python API 中的 _ref dtypes 已经弃用。

  • 在C++ API(in tensorflow/cc)中,Input,Output等已经从tensorflow::ops命名空间移动到tensorflow。

  • 将{softmax,sparse_softmax,sigmoid} _cross_entropy_with_logits的arg order更改为(labels,predictions),并强制使用已命名的args。

『TensorFlow』0.x_&_1.x版本框架改动汇总的更多相关文章

  1. 『TensorFlow』TFR数据预处理探究以及框架搭建

    一.TFRecord文件书写效率对比(单线程和多线程对比) 1.准备工作 # Author : Hellcat # Time : 18-1-15 ''' import os os.environ[&q ...

  2. 『TensorFlow』第三弹_可视化框架介绍_悄悄问圣僧

    添加记录节点 -> 汇总记录节点 -> run汇总节点 -> [书写器生成]书写入文件 [-> 刷新缓冲区] 可视化关键点: 注意, 1.with tf.name_scope( ...

  3. 『TensorFlow』专题汇总

    TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...

  4. 『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍

    一.论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feat ...

  5. 『TensorFlow』模型保存和载入方法汇总

    『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...

  6. 『TensorFlow』命令行参数解析

    argparse很强大,但是我们未必需要使用这么繁杂的东西,TensorFlow自己封装了一个简化版本的解析方式,实际上是对argparse的封装 脚本化调用tensorflow的标准范式: impo ...

  7. 『TensorFlow』SSD源码学习_其五:TFR数据读取&数据预处理

    Fork版本项目地址:SSD 一.TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dat ...

  8. 『TensorFlow』滑动平均

    滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.Ex ...

  9. 『TensorFlow』读书笔记_降噪自编码器

    『TensorFlow』降噪自编码器设计  之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Aut ...

随机推荐

  1. axios实现拦截器

    项目中通常使用token进行用户权限认证,需要在请求的header中添加token信息进行验证,拦截返回的状态码进行跳转或重新登陆,在全局配置这些不妥,所以新建一个axios实例进行项目的配置. // ...

  2. python基础(3)-pycharm安装&for循环&format字符串&list列表&set集合使用

    安装IDE(PyCharm)&破解 点击下载安装包,安装. 点击下载破解补丁. 进入pycharm安装bin目录,将破解补丁copy到当前目录. 在bin目录下找到pycharm.exe.vm ...

  3. 【JVM】-NO.110.JVM.1 -【hsdis jitwatch 生成查看汇编代码】

    Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...

  4. mysql----------mysql5.7如何配置主从数据库

    主库: 1.配置文件里面加入以下两行 server-id=1 log-bin=MySQL-bin 2.创建账户 grant replication client,replication slave o ...

  5. Java-HttpURLConnection详细说明与实例

    URLConnection 类是一个抽象类,代表应用程序和URL之间的通信连接,此类的实例可用于读取和写入此URL引用的资源.URLConnection 允许使用GET,POST或者其他HTTP方法请 ...

  6. web前端学习历程--排序

    一.js排序方法 1.按字母顺序排列: arr.sort() 2.按数值从小到大: function sortNumber(a,b)//排序函数 { return a - b } var arr = ...

  7. n皇后问题——关于斜线的编号

    题目大意:在n*n的棋盘中,放置n个皇后(同一行.同一列.同一斜线,只有一个皇后) 这道题是一道非常经典的dfs模板题,同一行.同一列的判断不是很难,但同一斜线有一定的难度,下面给出关于斜线编号的解决 ...

  8. HTML基础教程

    <!DOCTYPE html><html> <head> <title></title> </head> <body> ...

  9. Beautiful Soup 学习手册

    Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式   快速开始 下面的一段HTML代码将作为例 ...

  10. SpringMVC登录拦截DEMO

    交给/login的post请求的控制器处理, 并通过控制器的逻辑控制获取提示信息login.jsp<%-- Created by IntelliJ IDEA. User: shijinglu D ...