(大数)Computer Transformation hdu1041
Computer Transformation
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8688 Accepted Submission(s): 3282
Problem Description
A sequence consisting of one digit, the number 1 is initially written into a computer. At each successive time step, the computer simultaneously tranforms each digit 0 into the sequence 1 0 and each digit 1 into the sequence 0 1. So, after the first time step, the sequence 0 1 is obtained; after the second, the sequence 1 0 0 1, after the third, the sequence 0 1 1 0 1 0 0 1 and so on.
How many pairs of consequitive zeroes will appear in the sequence after n steps?
Input
Every input line contains one natural number n (0 < n ≤1000).
Output
For each input n print the number of consecutive zeroes pairs that will appear in the sequence after n steps.
Sample Input
2
3
Sample Output
1
1
用java,递推
递推:0->10 ;
1->01;
00->1010;
10->0110;
01->1001;
11->0101;
假设a[i]表示第i 步时候的00的个数,由上面的可以看到,00是由01 得到的,所以只要知道a[i-1]的01的个数就能够知道a[i]的00的个数了,那a[i-1]怎么求呢,同样看推导,01由1和00 得到,而第i步1的个数是2^(i-1),所以a[i]=2^(i-3)+a[i-2];(最后计算的是第i-2步情况)。
- import java.math.BigDecimal;
- import java.math.BigInteger;
- import java.util.Scanner;
- public class Main {
- public static void main(String[] args) {
- Scanner in = new Scanner(System.in);
- BigInteger a[]=new BigInteger[1001];
- while(in.hasNextInt()) {
- int n=in.nextInt();
- a[1]=BigInteger.valueOf(0);
- a[2]=BigInteger.valueOf(1);
- a[3]=BigInteger.valueOf(1);
- for(int i=4;i<=n;i++) {
- a[i]=BigInteger.valueOf(0); //先进行初始化。
- int m=i-3; //在大数的pow(m,n)中,n是int类型的,m是BigInteger类型的。
- BigInteger q= new BigInteger("2");
- a[i]=a[i].add(q.pow(m));
- a[i]=a[i].add(a[i-2]);
- }
- System.out.println(a[n]);
- }
- }
- }
(大数)Computer Transformation hdu1041的更多相关文章
- HDU 1041 Computer Transformation (简单大数)
Computer Transformation http://acm.hdu.edu.cn/showproblem.php?pid=1041 Problem Description A sequenc ...
- hdu_1041(Computer Transformation) 大数加法模板+找规律
Computer Transformation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/ ...
- Computer Transformation(简单数学题+大数)
H - Computer Transformation Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d &am ...
- Computer Transformation(规律,大数打表)
Computer Transformation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/ ...
- ACM学习历程—HDU1041 Computer Transformation(递推 && 大数)
Description A sequence consisting of one digit, the number 1 is initially written into a computer. A ...
- HDOJ-1041 Computer Transformation(找规律+大数运算)
http://acm.hdu.edu.cn/showproblem.php?pid=1041 有一个初始只有一个1的串 每次都按①0 -> 10;②1 -> 01;这两条规则进行替换 形如 ...
- HDU 1041 Computer Transformation(找规律加大数乘)
主要还是找规律,然后大数相乘 #include<stdio.h> #include<string.h> #include<math.h> #include<t ...
- Computer Transformation(hdoj 1041)
Problem Description A sequence consisting of one digit, the number 1 is initially written into a com ...
- HDU 1041 Computer Transformation 数学DP题解
本题假设编程是使用DP思想直接打表就能够了. 假设是找规律就须要数学思维了. 规律就是看这些连续的0是从哪里来的. 我找到的规律是:1经过两次裂变之后就会产生一个00: 00经过两次裂变之后也会产生新 ...
随机推荐
- linux-IO重定向-文本流重定向
输出重定向的追加和覆盖 标准输出就这两种: 覆盖和追加 >> 是重定向操作符 1 是 命令的文件描述符 重定向操作符合文件描述符之间不能存在空白符 否则1会被当做是文件被读取 将正确和错误 ...
- B. Divisor Subtraction
链接 [http://codeforces.com/contest/1076/problem/B] 题意 给你一个小于1e10的n,进行下面的运算,n==0 结束,否则n-最小质因子,问你进行多少步 ...
- Proxy 示例
package cn.proxy03; import java.lang.reflect.InvocationHandler; import java.lang.reflect.Method; imp ...
- 第三个Sprint冲刺第九天(燃尽图)
- C++中struct 和 class的区别
首先,C++中类的定义,从狭义上理解,就是我们使用的class类型.从广义上,类就是定义了一个新的类型和新的作用域,它具有成员函数和成员数据. 而对广义类定义的实现分为两种,一种是使用struct实现 ...
- CentOS 7 Install Adobe Flash Player
From Officail Adobe Flash Site don't down (YUM )adobe-release-x86_64-1.0-1.noarch.rpm,but to downloa ...
- Macbook系统环境安装wget的2个方法 - 传统包及Homebrew安装
文章目录 这里有2个方法可以安装wget命令工具: 考虑到自身项目的拓展需要,朋友建议学习Python爬虫这样对于做大数据采集有较大的帮助,老蒋虽然每天也都接触一些脚本和程序的修改,但是并没有专业和系 ...
- zabbix2.2 - FromDual.MySQL.check" became not supported
升级zabbix后发现zabbix server日志中多个实例报错如下: 27974:20171227:113001.724 item "实例name:FromDual.MySQL.chec ...
- Lodop窗口的按钮、权限,隐藏或设置功能不可用
Lodop隐藏某个按钮或部分,具体参考Lodop技术手册 SET_SHOW_MODE篇.以下是几个例子,(对应下图图片): 第一种:LODOP.SET_SHOW_MODE ("HIDE_PB ...
- anaconda2安装cv2
http://m.blog.csdn.net/u010167269/article/details/62447648 下载离线安装包:https://anaconda.org/menpo/opencv ...