时间限制: 1 Sec 内存限制: 128 MB
题目描述
Flow Free is a puzzle that is played on a 2D grid of cells, with some cells marked as endpoints of certain colors and the rest of cells being blank. To solve the puzzle, you have to connect each pair of colored endpoints with a path, following these rules:
there is a path connecting two points with the same color, and that path also has that color
all cells in the grid are used and each cell belongs to exactly one path (of the same color as the endpoints of the path)
The rules imply that different colored paths cannot intersect.
The path is defined as a connected series of segments where each segment connects two neighbouring cells. Two cells are neighbours if they share a side (so all segments are either horizontal or vertical). By these definitions and rules above, each colored cell will be an endpoint of exactly one segment and each blank cell will be an endpoint of exactly two segments.
In this problem we will consider only the 4×4 puzzle, with 3 or 4 pairs of colored endpoints given.
Your task is to determine if a given puzzle is solvable or not.
输入
The input consists of 4 lines, each line containing 4 characters. Each character is from the set {R, G,B, Y,W}whereW denotes the blank cells and the other characters denote endpoints with the specified color. You are guaranteed that there will be exactly 3 or 4 pairs of colored cells. If there are 3 colors in the grid, Y will be omitted.
输出
On a single line output either “solvable” or “not solvable” (without the quotes).
样例输入
RGBW
WWWW
RGBY
YWWW
样例输出
solvable

开始读错了题,没注意要连上所有的块。
暴力枚举每个W块的颜色,每种情况下从起点广搜终点,不用vis数组剪枝而采用记录路径(状压)可以保证搜到每种路径,搜到终点时判断是否走过了所有相同颜色的格子。
第二天仔细想想,还是写的太麻烦了,实际上直接深搜就好了…

#define IN_LB() freopen("F:\\in.txt","r",stdin)
#define IN_PC() freopen("C:\\Users\\hz\\Desktop\\in.txt","r",stdin)
#include <bits/stdc++.h> using namespace std;
const int dirx[] = {-1,0,1,0};
const int diry[] = {0,1,0,-1};
const char col[] ="RGBY";
char mapp[5][5]; struct node {
int x,y,route,step;
node() {}
node(int x,int y,int route,int step):x(x),y(y),route(route),step(step) {}
} cR[2],cG[2],cB[2],cY[2]; int cntR,cntG,cntB,cntY;
vector <int> v; int xytoInd(int x,int y){
return x*4+y;
} bool bfs(char color,node st,node ed,int cnum) {
queue<node> q;
q.push(st);
while(!q.empty()) {
int x = q.front().x,y=q.front().y,route = q.front().route,step = q.front().step;
q.pop();
if(x==ed.x&&y==ed.y&&cnum+1==step)return true;
for(int i=0; i<4; i++) {
int xx = x+dirx[i],yy=y+diry[i];
if(xx>=0&&xx<4&&yy>=0&&yy<4&&mapp[xx][yy]==color&&((route&(1<<xytoInd(xx,yy)))==0)) {
q.push(node(xx,yy,route|(1<<xytoInd(xx,yy)),step+1));
}
}
}
return false;
} int main() {
// IN_PC();
for(int i=0; i<4; i++) {
scanf("%s",mapp[i]);
}
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
if(mapp[i][j]=='W') {
v.push_back(i*4+j);
}
if(mapp[i][j]=='R') {
cR[cntR++] = node(i,j,1<<xytoInd(i,j),0);
}
if(mapp[i][j]=='G') {
cG[cntG++] = node(i,j,1<<xytoInd(i,j),0);
}
if(mapp[i][j]=='B') {
cB[cntB++] = node(i,j,1<<xytoInd(i,j),0);
}
if(mapp[i][j]=='Y') {
cY[cntY++] = node(i,j,1<<xytoInd(i,j),0);
}
}
}
int num = v.size();
int flag = 0;
if(num==8) {
int sumsta = pow(4,8);
for(int i=0; i<sumsta; i++) {
int c = i,cn[4]={0};
for(int j=0; j<8; j++) {
int x = v[j]/4,y = v[j]%4;
mapp[x][y] = col[c%4];
cn[c%4]++;
c/=4;
}
if(bfs('R',cR[0],cR[1],cn[0])
&&bfs('G',cG[0],cG[1],cn[1])
&&bfs('B',cB[0],cB[1],cn[2])
&&bfs('Y',cY[0],cY[1],cn[3])) {
flag = 1;
break;
}
}
} else if(num==10) {
int sumsta = pow(3,10);
for(int i=0; i<sumsta; i++) {
int c = i,cn[3]={0};
for(int j=0; j<10; j++) {
int x = v[j]/4,y = v[j]%4;
mapp[x][y] = col[c%3];
cn[c%3]++;
c/=3;
}
if(bfs('R',cR[0],cR[1],cn[0])
&&bfs('G',cG[0],cG[1],cn[1])
&&bfs('B',cB[0],cB[1],cn[2])) {
flag = 1;
break;
}
}
}
if(flag)printf("solvable\n");
else printf("not solvable\n");
return 0;
}

【暴力枚举&BFS】Flow Free @RMRC2017/upcexam5124的更多相关文章

  1. CodeForces 742B Arpa’s obvious problem and Mehrdad’s terrible solution (暴力枚举)

    题意:求定 n 个数,求有多少对数满足,ai^bi = x. 析:暴力枚举就行,n的复杂度. 代码如下: #pragma comment(linker, "/STACK:1024000000 ...

  2. 2014牡丹江网络赛ZOJPretty Poem(暴力枚举)

    /* 将给定的一个字符串分解成ABABA 或者 ABABCAB的形式! 思路:暴力枚举A, B, C串! */ 1 #include<iostream> #include<cstri ...

  3. HNU 12886 Cracking the Safe(暴力枚举)

    题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=12886&courseid=274 解题报告:输入4个数 ...

  4. 51nod 1116 K进制下的大数 (暴力枚举)

    题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; ; ; ch ...

  5. Codeforces Round #349 (Div. 1) B. World Tour 最短路+暴力枚举

    题目链接: http://www.codeforces.com/contest/666/problem/B 题意: 给你n个城市,m条单向边,求通过最短路径访问四个不同的点能获得的最大距离,答案输出一 ...

  6. bzoj 1028 暴力枚举判断

    昨天梦到这道题了,所以一定要A掉(其实梦到了3道,有两道记不清了) 暴力枚举等的是哪张牌,将是哪张牌,然后贪心的判断就行了. 对于一个状态判断是否为胡牌,1-n扫一遍,然后对于每个牌,先mod 3, ...

  7. POJ-3187 Backward Digit Sums (暴力枚举)

    http://poj.org/problem?id=3187 给定一个个数n和sum,让你求原始序列,如果有多个输出字典序最小的. 暴力枚举题,枚举生成的每一个全排列,符合即退出. dfs版: #in ...

  8. hihoCoder #1179 : 永恒游戏 (暴力枚举)

    题意: 给出一个有n个点的无向图,每个点上有石头数个,现在的游戏规则是,设置某个点A的度数为d,如果A点的石子数大于等于d,则可以从A点给每个邻接点发一个石子.如果游戏可以玩10万次以上,输出INF, ...

  9. CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

    问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...

随机推荐

  1. [转]通过Spring Boot三分钟创建Spring Web项目

    来源:https://www.tianmaying.com/tutorial/project-based-on-spring-boot Spring Boot简介 接下来我们所有的Spring代码实例 ...

  2. ionic2程序调试

    新手一枚,之前一直做.net开发,最近接触Ionic2,也没有人带,只能自己一点点抠文档,查资料.一直苦于无法直接调试打包发不好的app,只能在代码里面加上alert一点一点的抛出要看信息,感觉就像瞎 ...

  3. centos6.5上安装redis3.2.1遇见的坑

    解决方法: 安装gcc即可解决 解决方法: make MALLOC=libc 原因分析: 说关于分配器allocator, 如果有MALLOC  这个 环境变量, 会有用这个环境变量的 去建立Redi ...

  4. Codeforces 348D Turtles LGV

    Turtles 利用LGV转换成求行列式值. #include<bits/stdc++.h> #define LL long long #define fi first #define s ...

  5. html ie

    <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content=" ...

  6. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  7. HDU5692 Snacks DFS序 线段树

    去博客园看该题解 题目 HDU5692 Snacks Problem Description 百度科技园内有n个零食机,零食机之间通过n−1条路相互连通.每个零食机都有一个值v,表示为小度熊提供零食的 ...

  8. ZooKeeper用途

    ZooKeeper还可以用作其他用途,例如: 数据发布与订阅(配置中心) 负载均衡 命名服务(Naming Service) 分布式通知/协调 集群管理与Master选举 分布式锁 分布式队列 一些在 ...

  9. gevent实现基于epoll和协程的服务器

    1. 导gevent中的猴子补丁,来把原来python自带的socket变成基于epoll的socket(解除阻塞问题) 代码: # from gevent import monkey;monkey. ...

  10. box-shadow阴影 三面显示

    想弄个只显示三面的阴影效果,网上一搜没有解决根本问题,最后还是在css3演示里面找到方法http://www.css88.com/tool/css3Preview/Box-Shadow.html 我把 ...