GMA Round 1 数列求和(Hard)
数列求和(Hard)
在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数)\\3(n为奇数) \end{cases}$
当n趋近于正无穷时,求{$a_n$}的前n项和。
由泰勒公式得
$$\frac{1}{1+x^3}=1-x^3+x^6-x^9+……+(-1)^nx^{3n}+……(x\in(-1,1))$$
对两端从0到t进行积分得
$$\int_{0}^{t}\frac{1}{1+x^3}dx$$ $$=\int_{0}^{t}dx-\int_{0}^{t}x^3dx+……$$ $$=t-\frac{t^4}{4}+\frac{t^7}{7}-……+(-1)^n\frac{t^{3n+1}}{3^n+1}+……$$
又
$$\int_{0}^{t}dx=\frac{1}{3}ln\frac{t+1}{\sqrt{t^2-t+1}}+\frac{\sqrt{3}}{3}arctan\frac{2\sqrt{3}t-\sqrt{3}}{3}+\frac{\sqrt{3}}{18}\pi$$
由莱布尼茨审敛法知$\sum_{n=0}^{\infty}(-1)^n\frac{1}{3n+1}$收敛
令t=1得
$$\sum_{n=1}^{\infty}a_i=\sum_{n=1}^{\infty}(-1)^n\frac{1}{3n+1}=\frac{1}{3}ln2+\frac{\sqrt{3}}{9}\pi-1$$
定位:困难题、超纲题
GMA Round 1 数列求和(Hard)的更多相关文章
- GMA Round 1 数列与方程
传送门 数列与方程 首项为1,各项均大于0的数列{$a_n$}的前n项和$S_n$满足对于任意正整数n:$S_{n+1}^2-2*S_{n+1}*S_{n}-\sqrt{2}*S_n-1=0$,求$a ...
- GMA Round 1 数列求单项
传送门 数列求单项 在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数)\\3(n ...
- 李洪强漫谈iOS开发[C语言-047]-数列求和
// // main.c // 53 - 数列求和 - 李洪强 // // Created by vic fan on 16/10/15. // Copyright © 2016年 李洪强. ...
- 40. 特殊a串数列求和
特殊a串数列求和 #include <stdio.h> int main() { int i, a, n, item, sum, temp; while (scanf("%d % ...
- GMA Round 1
学弟说我好久没更blog了. 因为自己最近其实没干什么. 所以来搬运一下GMA Round 1 的比赛内容吧,blog访问量.网站流量一举两得. 链接:https://enceladus.cf/con ...
- 数列求和 Exercise06_13
/** * @author 冰樱梦 * 时间:2018年下半年 * 题目:数列求和 * */ public class Exercise06_13 { public static void main( ...
- C语言程序设计100例之(23):数列求和
例23 数列求和 问题描述 已知某数列前两项为2和3,其后继项根据前面最后两项的乘积,按下列规则生成: ① 若乘积为一位数,则该乘积即为数列的后继项: ② 若乘积为二位数,则该乘积的十位上的数字和个 ...
- LibreOJ #528. 「LibreOJ β Round #4」求和
二次联通门 : LibreOJ #528. 「LibreOJ β Round #4」求和 /* LibreOJ #528. 「LibreOJ β Round #4」求和 题目要求的是有多少对数满足他们 ...
- 解题报告:luogu P5745 【深基附B例】数列求和
题目链接:P5745 [深基附B例]数列求和 现在想说:\(O(N)\)的题要不怎么也想不出来,要不灵光乍现,就像这道题. 我们维护一个类似单调队列的加法单调队列: 若相加大于此数,就将队尾元素弹出, ...
随机推荐
- Linux系统监控命令及定位Java线程
1.PID.TID的区分 uid是user id,即用户id,root用户的uid是0,0为最高权限,gid是group id,用户组id,使用 id 命令可以很简单的通过用户名查看UID.GID:~ ...
- tornado中form表单验证详解
#!/usr/bin/env python# _*_ coding:utf-8 _*_import tornado.webimport tornado.ioloopimport re class Ba ...
- ANGULAR6.x - 错误随笔 - Can't bind to 'formGroup'
formGroup:错误 Can't bind to 'formGroup' since it isn't a known property of 'form'. (" 原因: 在使用for ...
- day9.初识函数
python3 函数 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.你已经知道Python提供了许多内建函数,比如print().但你 ...
- BZOJ4802 欧拉函数 数论
原文链接http://www.cnblogs.com/zhouzhendong/p/8117744.html 题目传送门 - BZOJ4802 题意概括 Description 已知N,求phi(N) ...
- excel怎么样批量将unix时间戳转化为北京时间
https://jingyan.baidu.com/article/63acb44afb1e2561fcc17e3f.html 1.单元格属性改变日期 2.使用公式: =(A2+8*3600)/864 ...
- VS2017 cdkey
Enterprise:NJVYC-BMHX2-G77MM-4XJMR-6Q8QF ProfessionalKBJFW-NXHK6-W4WJM-CRMQB-G3CDH
- mybatis sql注入
这是${}与#{}的区别,#{}采用了预编译,在SQL执行前,会先将上面的SQL发送给数据库进行编译:执行时,直接使用编译好的SQL,替换占位符“?”就可以了.因为SQL注入只能对编译过程起作用,所以 ...
- POJ 2029 Get Many Persimmon Trees (模板题)【二维树状数组】
<题目链接> 题目大意: 给你一个H*W的矩阵,再告诉你有n个坐标有点,问你一个w*h的小矩阵最多能够包括多少个点. 解题分析:二维树状数组模板题. #include <cstdio ...
- python 数据结构之归并排序
def merger_sort(alist): if len(alist) <= 1 : return alist num=int(len(alist)/2) left=merger_sort( ...