这次我期待了很久的Luogu月赛崩掉了

传说中的Luogu神机就这样被卡爆了

然后我过了20min才登上Luogu的网站,30min后才看到题目

然后交T1TM的不给我测!!!然后又交了一次机子就炸了,好几个点都不测

然后感觉游戏体验极差。交了一波T2又有一堆点不给我测,还莫名T了几个点这机子真的

然后就直接关掉睡觉去了

不过说实话题目还是很好的,值得深思一下

A: T29693 取石子

这道题目还是很良心的,水的一批

首先注意到因为a[0]=0,因此只要石子没取光就一定可以继续取

然后判断一下Σa[i]的奇偶性即可

CODE

#include<cstdio>
using namespace std;
int x,n;
long long tot;
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n);
for (i=1;i<=n;++i)
read(x),tot+=x;
puts(tot%2?"Alice":"Bob");
return 0;
}

B: T30204 偷上网

这道题还是比较欧洲玄学

首先当n=1时,半径为l,因此我们枚举一下四个角落是否满足条件即可,否则输出GG

当n>=2时,由于圆的面积绝对小于正方形的面积,所以一定有解

但是怎么找到那个解呢?

rand大法好,我们直接上rand判断是否可行即可

虽然有大佬给出证明n>=2时在边上一定能找到点,但是这里rand真心快,全部0ms卡过去了,所以也没去打别的算法了

randCODE

#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<cmath>
using namespace std;
typedef double DB;
const int N=15;
const DB EPS=1e-6;
int n,l;
DB x[N],y[N];
inline DB calc(DB a,DB b,DB c,DB d)
{
return sqrt((a-c)*(a-c)+(b-d)*(b-d));
}
inline void sp_work(int l)
{
if (calc(0.0,0.0,x[1],y[1])>=(DB)l/n+EPS) { printf("%.3lf %.3lf",0.0,0.0); exit(0); }
if (calc(0.0,(DB)l,x[1],y[1])>=(DB)l/n+EPS) { printf("%.3lf %.3lf",0.0,(DB)l); exit(0); }
if (calc((DB)l,0.0,x[1],y[1])>=(DB)l/n+EPS) { printf("%.3lf %.3lf",(DB)l,0.0); exit(0); }
if (calc((DB)l,(DB)l,x[1],y[1])>=(DB)l/n+EPS) { printf("%.3lf %.3lf",(DB)l,(DB)l); exit(0); }
puts("GG"); return;
}
inline void com_work(int l)
{
for (;;)
{
DB a=rand()%l+(DB)(rand()%1000)/1000,b=rand()%l+(DB)(rand()%1000)/1000; bool flag=1;
for (register int i=1;i<=n;++i)
if (calc(a,b,x[i],y[i])<(DB)l/n+EPS) { flag=0; break; }
if (flag) { printf("%.3lf %.3lf",a,b); exit(0); }
}
}
int main()
{
srand(time(0)); register int i;
scanf("%d%d",&n,&l);
for (i=1;i<=n;++i)
scanf("%lf%lf",&x[i],&y[i]);
if (n==1) sp_work(l); else com_work(l);
return 0;
}

C: T28881 粘骨牌

这是一道比较需要思维的题目了

首先我们先来考虑GG的情况,这个很简单,除非起点就是特殊点,要不然不可能会GG

这个还是很简单的,因为就算其他点都是特殊点,我大不了把所有骨牌都固定住,这样其他点就露不出来了

然后我们考虑建边,对于所有的点,我们向它有可能可以到达的点建边,边权就是固定这个骨牌的代价

然后我们简单分析一下,就可以发现这是一棵树,因为每一个骨牌都可以连出两条边,并且不可能有环

然后就要求最小的代价割掉所有点,所以我们考虑树形DP

设f[x]表示割掉x及其所有字数中的特殊点的最小代价,则

f[x]=v[fa[x]][x] (if x is a special node)

f[x]=Σmin(v[x][son[x]],f[son[x]]) ( if x is a common node)

然后我们发现这个建图可以和DP的过程一起写成一个类似记搜的方法,然后刚上去就可以了

CODE

#include<cstdio>
using namespace std;
const int N=1005,fx[4]={0,1,0,-1},fy[4]={1,0,-1,0};
int a[N][N],c[N*N],n,m,k,t,x,y,s_x,s_y;
bool sp[N][N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
inline long long min(long long a,long long b)
{
return a<b?a:b;
}
inline bool check(int x,int y)
{
return x>=1&&x<=n&&y>=1&&y<=m;
}
inline long long DFS(int x,int y)
{
long long ans=0;
for (register int i=0;i<4;++i)
{
int xx=x+fx[i]*2,yy=y+fy[i]*2;
if (check(xx,yy)&&a[x+fx[i]][y+fy[i]]==a[xx][yy])
{
if (sp[xx][yy]) ans+=c[a[xx][yy]]; else ans+=min(DFS(xx,yy),c[a[xx][yy]]);
}
}
return ans;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i,j;
read(n); read(m); read(k); t=n*m-1>>1;
for (i=1;i<=t;++i)
read(c[i]);
for (i=1;i<=k;++i)
read(x),read(y),sp[x][y]=1;
for (i=1;i<=n;++i)
for (j=1;j<=m;++j)
{
read(a[i][j]);
if (!a[i][j]) s_x=i,s_y=j;
}
if (sp[s_x][s_y]) puts("GG"); else printf("%lld",DFS(s_x,s_y));
return 0;
}

D: T30208 太极剑&&E: T30212 玩游戏

这两题还是太难了,自己看题解也看不懂吧

留着以后填

【LGR-047】洛谷5月月赛的更多相关文章

  1. 洛谷4月月赛R2

    洛谷4月月赛R2 打酱油... A.koishi的数学题  线性筛约数和就可以\(O(N)\)了... #include <iostream> #include <cstdio> ...

  2. 洛谷3月月赛 R1 Step! ZERO to ONE

    洛谷3月月赛 R1 Step! ZERO to ONE 普及组难度 290.25/310滚粗 t1 10分的日语翻译题....太难了不会... t2 真·普及组.略 注意长为1的情况 #include ...

  3. 【洛谷5月月赛】玩游戏(NTT,生成函数)

    [洛谷5月月赛]玩游戏(NTT,生成函数) 题面 Luogu 题解 看一下要求的是什么东西 \((a_x+b_y)^i\)的期望.期望显然是所有答案和的平均数. 所以求出所有的答案就在乘一个逆元就好了 ...

  4. 【LGR-054】洛谷10月月赛II

    [LGR-054]洛谷10月月赛II luogu 成功咕掉Codeforces Round #517的后果就是,我\(\mbox{T4}\)依旧没有写出来.\(\mbox{GG}\) . 浏览器 \( ...

  5. 【LGR-051】洛谷9月月赛

    [LGR-051]洛谷9月月赛 luogu 签到题 description 给出\(K\)和质数\(m\),求最小的\(N\)使得\(111....1\)(\(N\)个\(1\))\(\equiv k ...

  6. 「LGR-049」洛谷7月月赛 D.Beautiful Pair

    「LGR-049」洛谷7月月赛 D.Beautiful Pair 题目大意 : 给出长度为 \(n\) 的序列,求满足 \(i \leq j\) 且 $a_i \times a_j \leq \max ...

  7. 洛谷9月月赛round2

    洛谷9月月赛2 t1 题意:懒得说了 分析:模拟 代码: program flag; var a:..,..]of char; n,i,m,j,x,y,ans,k:longint; begin ass ...

  8. 「P4996」「洛谷11月月赛」 咕咕咕(数论

    题目描述 小 F 是一个能鸽善鹉的同学,他经常把事情拖到最后一天才去做,导致他的某些日子总是非常匆忙. 比如,时间回溯到了 2018 年 11 月 3 日.小 F 望着自己的任务清单: 看 iG 夺冠 ...

  9. 「P4994」「洛谷11月月赛」 终于结束的起点(枚举

    题目背景 终于结束的起点终于写下句点终于我们告别终于我们又回到原点…… 一个个 OIer 的竞赛生涯总是从一场 NOIp 开始,大多也在一场 NOIp 中结束,好似一次次轮回在不断上演.如果这次 NO ...

  10. 「LuoguP4995」「洛谷11月月赛」 跳跳!(贪心

    题目描述 你是一只小跳蛙,你特别擅长在各种地方跳来跳去. 这一天,你和朋友小 F 一起出去玩耍的时候,遇到了一堆高矮不同的石头,其中第 ii 块的石头高度为 h_ihi​,地面的高度是 h_0 = 0 ...

随机推荐

  1. Fiddler抓包使用教程-QuickExec

    转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/73468287 本文出自[赵彦军的博客] 在 Fiddler 中自带了一个 Quic ...

  2. 如何打jar包

    一.制作只含有字节码文件的jar包1.最简单的jar包——直接输出hello2.含有两个类的jar包——通过调用输出hello3.有目录结构的jar包——通过引包并调用输出hello 二.制作含有ja ...

  3. exception is feign.RetryableException: Connection refused (Connection refused) executing GET http://......

    2018-03-23 10:00:58.430 ERROR 31889 --- [nio-4321-exec-7] o.a.c.c.C.[.[.[/].[dispatcherServlet] : Se ...

  4. Websocket通信过程

    1. 客户端与服务器建立连接 2. 客户端通过session向服务器发送消息 3. 服务器接收客户端的消息,调用服务器端的onMessage()方法包装.生成消息内容(新的消息包括客户端ID) 4. ...

  5. ORACLE11g下如何利用SQL DEVELOPER连接上数据库

    最近在学习数据库的相关内容,在sqlplus敲了几天命令行窗口后,想尝试一下用sql developer 连接上数据库但一直没有实现.在网上查询了相关资料后现在终于弄好了,就来写下此篇博文与大家分享! ...

  6. linux下zip文件解压乱码的问题

    因为编码问题,zip文件中的中文文件在linux下解压会出现乱码 如果你使用archlinux那么使用AUR安装unzip-natspec就可以解决这个问题 https://aur.archlinux ...

  7. Nginx状态信息(status)配置及信息详解

    nginx状态信息功能的介: Nginx 在编译安装 Nginx 的时候添加 --with-http_stub_status_module 参数,其功能是记录 Nginx 的基本访问状态信息,让使用者 ...

  8. C语言四舍五入

    //今天遇到了四舍五入的问题,这些问题如果不看别人的真的难想出这么巧妙的方法啊.努力积累,早日成为大佬. int i = (int)(a + 0.5) ////小数部分大于0.4,加上0.5就会超过整 ...

  9. 关于plist文件的那些事

    今天遇到新生问一个问题,就是用自己定义了一个plist文件,然后可以往里面写东西,但是写过再次运行的时候里面的数据总是最后一次写入的数据.后来就专门研究了一下plist文件. 大家都知道当你创建一个项 ...

  10. JavaScipt中的Math.ceil() 、Math.floor() 、Math.round()、Math.pow() 三个函数的理解

    以前一直会三个函数的使用产生混淆,现在通过对三个函数的原型定义的理解,其实很容易记住三个函数. 现在做一个总结: 1. Math.ceil()用作向上取整. 2. Math.floor()用作向下取整 ...