对给定模数分解质因数后约分即可。依然常数巨大过不了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 10010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
ll gcd(ll n,ll m){return m==?n:gcd(m,n%m);}
ll read()
{
ll x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,q,cnt,p[],prime[],tot[],t;
ll g[],a[][N],b[N],c[N],d[N];
bool flag[];
ll ksc(ll a,ll b,ll p)
{
ll t=a*b-(ll)((long double)a*b/p+0.5)*p;
return t<?t+p:t;
}
ll ksm(ll a,ll k,ll p)
{
ll s=;
for (;k;k>>=,a=ksc(a,a,p)) if (k&) s=ksc(s,a,p);
return s;
}
void exgcd(ll &x,ll &y,ll a,ll b)
{
if (b==)
{
x=,y=;
return;
}
exgcd(x,y,b,a%b);
ll t=x;x=y;y=t-a/b*x;
}
ll inv(ll a,ll p)
{
ll x,y;exgcd(x,y,a,p);
x=(x%p+p)%p;
return x;
}
bool check(int k,ll n)
{
if (ksm(k,n-,n)!=) return ;
ll p=n-;
while (!(p&))
{
p>>=;ll x=ksm(k,p,n);
if (x==n-) return ;
if (x!=) return ;
}
return ;
}
bool Miller_Rabin(ll n)
{
if (n<=) return !flag[n];
return check(,n)&&check(,n)&&check(,n)&&check(,n)&&check(,n)&&check(,n);
}
ll f(ll x,ll p,int c){return (ksc(x,x,p)+c)%p;}
void getfactor(ll n)
{
if (n<=)
{
while (n>) g[++cnt]=p[n],n/=p[n];
return;
}
if (Miller_Rabin(n)) {g[++cnt]=n;return;}
while ()
{
int c=rand()%(n-)+;
ll x=rand()%n,y=x;
do
{
ll z=gcd(abs(x-y),n);
if (z>&&z<n) {getfactor(z),getfactor(n/z);return;}
x=f(x,n,c),y=f(f(y,n,c),n,c);
}while (x!=y);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4891.in","r",stdin);
freopen("bzoj4891.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),q=read();
flag[]=;
for (int i=;i<=;i++)
{
if (!flag[i]) prime[++t]=i,p[i]=i;
for (int j=;j<=t&&prime[j]*i<=;j++)
{
flag[prime[j]*i]=;
p[prime[j]*i]=prime[j];
if (i%prime[j]==) break;
}
}
for (int i=;i<=m;i++) b[i]=read();
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
a[i][j]=read();
while (q--)
{
int x=read();ll y=read(),ans=;cnt=;getfactor(y);
sort(g+,g+cnt+);cnt=unique(g+,g+cnt+)-g-;memset(tot,,sizeof(tot));
memcpy(c,b,sizeof(c));memcpy(d,a[x],sizeof(d));
for (int i=;i<=m;i++)
{
for (int j=;j<=cnt;j++)
while (c[i]%g[j]==) tot[j]++,c[i]/=g[j];
for (int j=;j<=cnt;j++)
while (d[i]%g[j]==) tot[j]--,d[i]/=g[j];
ans=ksc(ksc(ans,c[i],y),inv(d[i],y),y);
}
for (int i=;i<=cnt;i++)
if (tot[i]<) {ans=-;break;}
else ans=ksc(ans,ksm(g[i],tot[i],y),y);
cout<<ans<<endl;
}
return ;
}

BZOJ4891 TJOI2017龙舟(Polllard-Rho)的更多相关文章

  1. BZOJ4891:[TJOI2017]龙舟(Pollard-Rho,exgcd)

    Description 加里敦大学有一个龙舟队,龙舟队有n支队伍,每只队伍有m个划手,龙舟比赛是一个集体项目,和每个人的能力息息相关,但由于龙舟讲究配合,所以评价队伍的能力的是一个值c = (b1*b ...

  2. bzoj4891: [Tjoi2017]龙舟

    求$\frac{b_1b_2b_3...b_m}{a_1a_2a_3...a_m}\%M$ M<=1e18,m<=100000,数据组数<=50 用pollard-rho分解M的质因 ...

  3. 【BZOJ4891】[TJOI2017]龙舟(Pollard_rho)

    [BZOJ4891][TJOI2017]龙舟(Pollard_rho) 题面 BZOJ 洛谷 题解 看了半天题....就是让你求\(\frac{b}{a}\)在模\(M\)意义下的值... 首先把\( ...

  4. POJ 1811 Prime Test (Pollard rho 大整数分解)

    题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...

  5. POJ2429 - GCD & LCM Inverse(Miller–Rabin+Pollard's rho)

    题目大意 给定两个数a,b的GCD和LCM,要求你求出a+b最小的a,b 题解 GCD(a,b)=G GCD(a/G,b/G)=1 LCM(a/G,b/G)=a/G*b/G=a*b/G^2=L/G 这 ...

  6. POJ1811- Prime Test(Miller–Rabin+Pollard's rho)

    题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...

  7. poj 1811 Pallor Rho +Miller Rabin

    /* 题目:给出一个数 如果是prime 输出prime 否则输出他的最小质因子 Miller Rabin +Poller Rho 大素数判定+大数找质因子 后面这个算法嘛 基于Birthday Pa ...

  8. Miller_Rabin素数判断,rho

    safe保险一点5吧.我是MR: ; int gcd(int a,int b){return !b?a:gcd(b,a%b);} int mul(int a,int b,int p){ )*p); ? ...

  9. 质因数分解的rho以及miller-rabin

    一.前言 质因数分解,是一个在算法竞赛里老生常谈的经典问题.我们在解决许多问题的时候需要用到质因数分解来辅助运算,而且质因数分解牵扯到许许多多经典高效的算法,例如miller-rabin判断素数算法, ...

随机推荐

  1. DataWorks使用小结(二)——功能面板使用指南

    一.数据开发 1.任务开发 新建表 野路子可以直接新建一个任务,粘贴DDL,手动运行任务即可完成建表 正常应当是在“数据管理”->数据表管理中建表: 支持可视化建表和DDL建表(配合之前的宏,建 ...

  2. Vue中axios访问 后端跨域问题

    public class AllowOriginFilter implements Filter { @SuppressWarnings("unused") public void ...

  3. 从源码的角度看 React JS 中批量更新 State 的策略(上)

    在之前的文章「深入理解 React JS 中的 setState」与 「从源码的角度再看 React JS 中的 setState」 中,我们分别看到了 React JS 中 setState 的异步 ...

  4. Houdini toolset environment variable setting

    Game Development Toolset HOUDINI_PATH = "C:\Users\fooldrifter\Documents\houdini17.5\GameDevelop ...

  5. Python3出现"No module named 'MySQLdb'"问题-以及使用PyMySQL连接数据库

    Python3 与 Django 连接数据库,出现了报错:Error loading MySQLdb module: No module named 'MySQLdb'.原因如下:在 python2 ...

  6. nginx日志格式字段

    Nginx日志主要分为两种:访问日志和错误日志.日志开关在Nginx配置文件(/etc/nginx/nginx.conf)中设置,两种日志都可以选择性关闭,默认都是打开的. 访问日志 访问日志主要记录 ...

  7. android studio报Resolved versions for app (26.1.0) and test app (27.1.1)differ. 错误的解决办法

    https://blog.csdn.net/qq_36636969/article/details/80278150

  8. 个人博客week7

    IBM大型机之父佛瑞德·布鲁克斯(Frederick P. Brooks, Jr.)在1986年发表的一篇关于软件工程的经典论文,便以<没有银弹:软件工程的本质性与附属性工作>(No Si ...

  9. 个人博客作业Week2(9月30日)

    一.是否需要有代码规范 1.这些规范都是官僚制度下产生的浪费大家的编程时间.影响人们开发效率, 浪费时间的东西. 这些规范并不是一开始就有的,也不是由某个人规定的,代码规范是程序员们在不断地编程实践过 ...

  10. Daily Scrumming* 2015.12.21(Day 13)

    一.团队scrum meeting照片 大部分成员编译请假,故今天没有开scrum meeting 二.成员工作总结 姓名 任务ID 迁入记录 江昊 无 无 任务说明: 今日准备编译测验,请假 遇到问 ...