交叉熵的作用

通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有1000个节点:

而即便是ResNet取消了全连接层,也会在最后有一个1000个节点的输出层:

一般情况下,最后一个输出层的节点个数与分类任务的目标数相等。假设最后的节点数为N,那么对于每一个样例,神经网络可以得到一个N维的数组作为输出结果,数组中每一个维度会对应一个类别。在最理想的情况下,如果一个样本属于k,那么这个类别所对应的的输出节点的输出值应该为1,而其他节点的输出都为0,即[0,0,1,0,….0,0],这个数组也就是样本的Label,是神经网络最期望的输出结果,交叉熵就是用来判定实际的输出与期望的输出的接近程度!

Softmax回归处理

神经网络的原始输出不是一个概率值,实质上只是输入的数值做了复杂的加权和与非线性处理之后的一个值而已,那么如何将这个输出变为概率分布?
这就是Softmax层的作用,假设神经网络的原始输出为y1,y2,….,yn,那么经过Softmax回归处理之后的输出为:

很显然的是:

而单个节点的输出变成的一个概率值,经过Softmax处理后结果作为神经网络最后的输出。

交叉熵的原理

交叉熵刻画的是实际输出(概率)与期望输出(概率)的距离,也就是交叉熵的值越小,两个概率分布就越接近。假设概率分布p为期望输出,概率分布q为实际输出,H(p,q)为交叉熵,则:

这个公式如何表征距离呢,举个例子:
假设N=3,期望输出为p=(1,0,0),实际输出q1=(0.5,0.2,0.3),q2=(0.8,0.1,0.1),那么:

很显然,q2与p更为接近,它的交叉熵也更小。
除此之外,交叉熵还有另一种表达形式,还是使用上面的假设条件:

其结果为:

以上的所有说明针对的都是单个样例的情况,而在实际的使用训练过程中,数据往往是组合成为一个batch来使用,所以对用的神经网络的输出应该是一个m*n的二维矩阵,其中m为batch的个数,n为分类数目,而对应的Label也是一个二维矩阵,还是拿上面的数据,组合成一个batch=2的矩阵:


所以交叉熵的结果应该是一个列向量(根据第一种方法):

而对于一个batch,最后取平均为0.2。

在TensorFlow中实现交叉熵

在TensorFlow可以采用这种形式:

cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0))) 

其中y_表示期望的输出,y表示实际的输出(概率值),*为矩阵元素间相乘,而不是矩阵乘。
上述代码实现了第一种形式的交叉熵计算,需要说明的是,计算的过程其实和上面提到的公式有些区别,按照上面的步骤,平均交叉熵应该是先计算batch中每一个样本的交叉熵后取平均计算得到的,而利用tf.reduce_mean函数其实计算的是整个矩阵的平均值,这样做的结果会有差异,但是并不改变实际意义。
除了tf.reduce_mean函数,tf.clip_by_value函数是为了限制输出的大小,为了避免log0为负无穷的情况,将输出的值限定在(1e-10, 1.0)之间,其实1.0的限制是没有意义的,因为概率怎么会超过1呢。

由于在神经网络中,交叉熵常常与Sorfmax函数组合使用,所以TensorFlow对其进行了封装,即:

cross_entropy = tf.nn.softmax_cross_entropy_with_logits(y_ ,y)

与第一个代码的区别在于,这里的y用神经网络最后一层的原始输出就好了。

转:http://blog.csdn.net/chaipp0607/article/details/73392175

理解交叉熵(cross_entropy)作为损失函数在神经网络中的作用的更多相关文章

  1. 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络

    最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...

  2. 深度学习基础系列(五)| 深入理解交叉熵函数及其在tensorflow和keras中的实现

    在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数.假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地 ...

  3. 【转载】深度学习中softmax交叉熵损失函数的理解

    深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原 ...

  4. softmax交叉熵损失函数求导

    来源:https://www.jianshu.com/p/c02a1fbffad6 简单易懂的softmax交叉熵损失函数求导 来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福 ...

  5. 交叉熵理解:softmax_cross_entropy,binary_cross_entropy,sigmoid_cross_entropy简介

    cross entropy 交叉熵的概念网上一大堆了,具体问度娘,这里主要介绍深度学习中,使用交叉熵作为类别分类. 1.二元交叉熵 binary_cross_entropy 我们通常见的交叉熵是二元交 ...

  6. TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵

    TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激 ...

  7. 【机器学习基础】交叉熵(cross entropy)损失函数是凸函数吗?

    之所以会有这个问题,是因为在学习 logistic regression 时,<统计机器学习>一书说它的负对数似然函数是凸函数,而 logistic regression 的负对数似然函数 ...

  8. 深度学习中交叉熵和KL散度和最大似然估计之间的关系

    机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论 ...

  9. 交叉熵代价函数——当我们用sigmoid函数作为神经元的激活函数时,最好使用交叉熵代价函数来替代方差代价函数,以避免训练过程太慢

    交叉熵代价函数 machine learning算法中用得很多的交叉熵代价函数. 1.从方差代价函数说起 代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigm ...

随机推荐

  1. setsockopt设置socket状态

    setsockopt设置socket状态 1.closesocket(一般不会立即关闭而经历TIME_WAIT的过程)后想继续重用该socket:BOOL bReuseaddr=TRUE;setsoc ...

  2. c++ stl源码剖析学习笔记(一)uninitialized_copy()函数

    template <class InputIterator, class ForwardIterator>inline ForwardIterator uninitialized_copy ...

  3. Matching Networks for One Shot Learning

    1. Introduction In this work, inspired by metric learning based on deep neural features and memory a ...

  4. Samba简介与配置(匿名&本地用户验证)

    Samba简介 Samba是在Linux和UNIX系统上实现SMB协议的一个免费软件,由服务器及客户端程序构成. 在此之前我们已经了解了NFS,NFS与samba一样,也是在网络中实现文件共享的一种实 ...

  5. [C#.net]ListBox对Item进行重绘,设置背景色和前景色

    别的不多说了,上代码,直接看 首先设置这行,或者属性窗口设置,这样才可以启动手动绘制,参数有三个 Normal: 自动绘制 OwnerDrawFixed:手动绘制,但间距相同 OwnerDrawVar ...

  6. C# 创建Dll文件供程序调用方法

    C# 创建Dll文件供程序调用方法 使用C#创建动态Dll文件方法: 1.  在VS2017环境下,新建-项目-选择类库类型: 2. 新创建一个.cs文件(如test.cs),编写代码如下: usin ...

  7. Scrum冲刺阶段1

    各个成员在 Alpha 阶段认领的任务 人员 任务 何承华 美化设计 部分后端设计 陈宇 后端设计 丁培辉 美化设计 部分后端设计 温志铭 前端设计 杨宇潇 服务器搭建 张主强 前端设计 明日各个成员 ...

  8. 卓豪ManageEngine参加2018企业数字化转型与CIO职业发展高峰论坛

    卓豪ManageEngine参加2018企业数字化转型与CIO职业发展高峰论坛 2018年10月20日,78CIO APP在北京龙城温德姆酒店主办了主题为“新模式.新动能.新发展”的<2018企 ...

  9. 3 week work—Grid Layout

    HTML: <div class="wrapper"> //建立一个三列轨道网格. <div class="one">One</d ...

  10. Android数据存储之SQLite使用

    SQLite是D.Richard Hipp用C语言编写的开源嵌入式数据库引擎.它支持大多数的SQL92标准,并且可以在所有主要的操作系统上运行. 在Android中创建的SQLite数据库存储在:/d ...