Bayes++ Library入门学习之熟悉class-Bayesian_filter_base(2)
前面我们已经熟悉了Bayesian_filter::Bayes_filter_base和其子类的击继承关系,接下来我们开始学习该类的实现。
bayesFlt.hpp文件为其实现主体,首先是两个常规的头文件,一个是异常处理类型相关的,另一个是支持矩阵的头文件。
#include "bayesException.hpp" // exception types
#include "matSupSub.hpp" // matrix support subsystem
接着,所有的声明和定义全部都在namespace Bayseian_filter内部。在Bayes++库中,一般将Bayesian_filter_matrix以别名的形式使用
namespace FM = Bayesian_filter_matrix;
接着定义了一个抽象预测模型,该预测模型用来参数化滤波器中的预测函数
class Predict_model_base : public Bayes_base
{
// Empty
};
高斯预测模型,x(k|k-1) = x(k-1|k-1)) + G(k)w(k),其中q(k)是状态噪声协方差,即w(k)的协方差,G(k)表示状态噪声耦合
class Gaussian_predict_model : virtual public Predict_model_base
{
public:
Gaussian_predict_model (std::size_t x_size, std::size_t q_size); FM::Vec q; // Noise variance (always dense, use coupling to represent sparseness)
FM::Matrix G; // Noise Coupling Numerical_rcond rclimit;
// Reciprocal condition number limit of linear components when factorised or inverted
};
线性化预测模型,x(k|k-1) = f(x(k-1|k-1),Fx(x(k-1|k-1)表示函数fx相对于状态x的雅各比矩阵
class Linrz_predict_model : public Additive_predict_model
{
public:
Linrz_predict_model (std::size_t x_size, std::size_t q_size);
FM::Matrix Fx; // Model
};
抽象量测模型,量测模型被用来参数化滤波器的量测函数
class Observe_model_base : public Bayes_base
{
// Empty
};
Kalman状态滤波器,线性滤波器被表示成均值和协方差两个元素;概率性分布用状态向量x和协方差矩阵X表示。一般状态x的size假设为常量,
class Kalman_state_filter : public State_filter
{
public:
FM::SymMatrix X; // state covariance Kalman_state_filter (std::size_t x_size);
/* Initialise filter and set constant sizes
*/ /* Virtual functions for filter algorithm */ virtual void init () = ;
/* Initialise from current state and state covariance
Requires x(k|k), X(k|k)
*/
void init_kalman (const FM::Vec& x, const FM::SymMatrix& X);
/* Initialise from a state and state covariance
Parameters that reference the instance's x and X members are valid
*/
virtual void update () = ;
/* Update filters state and state covariance
Updates x(k|k), X(k|k)
*/ // Minimum allowable reciprocal condition number for PD Matrix factorisations
Numerical_rcond rclimit;
};
线性化滤波器模型,其中滤波器预测步骤使用了Linrz_predict_model来获取一个雅各比矩阵Fx和添加的噪声
class Linrz_filter : virtual public Bayes_filter_base
{
public:
/* Virtual functions for filter algorithm */ virtual Float predict (Linrz_predict_model& f) = ;
/* Predict state using a Linrz model
Requires x(k|k), X(k|k) or internal equivilent
Returns: Reciprocal condition number of primary matrix used in predict computation (1. if none)
*/ virtual Float observe (Linrz_uncorrelated_observe_model& h, const FM::Vec& z) = ;
virtual Float observe (Linrz_correlated_observe_model& h, const FM::Vec& z) = ;
/* Observation z(k) and with (Un)correlated observation noise model
Requires x(k|k), X(k|k) or internal equivalent
Returns: Reciprocal condition number of primary matrix used in observe computation (1. if none)
*/
};
EKF的量测的实现使用了量测模型的非线性部分和线性化量测模型的线性部分得到
class Extended_kalman_filter : public Linrz_kalman_filter
{
protected:
Extended_kalman_filter() : Kalman_state_filter() // define a default constructor
{}
public:
virtual Float observe (Linrz_uncorrelated_observe_model& h, const FM::Vec& z);
virtual Float observe (Linrz_correlated_observe_model& h, const FM::Vec& z);
/* Observation z(k) and with (Un)correlated observation noise model
Requires x(k|k), X(k|k) or internal equivalent
Returns: Reciprocal condition number of primary matrix used in observe computation (1. if none)
Default implementation simple computes innovation for observe_innovation
*/ virtual Float observe_innovation (Linrz_uncorrelated_observe_model& h, const FM::Vec& s) = ;
virtual Float observe_innovation (Linrz_correlated_observe_model& h, const FM::Vec& s) = ;
/* Observation innovation s(k) and with (Un)correlated observation noise model
Requires x(k|k), X(k|k) or internal equivalent
Returns: Reciprocal condition number of primary matrix used in observe computation (1. if none)
*/
};
至此,我们将常用的几个模型基类进行了简单的说明。
Bayes++ Library入门学习之熟悉class-Bayesian_filter_base(2)的更多相关文章
- Bayes++ Library入门学习之熟悉class-Bayesian_filter_base(1)
在对Bayes++库的名称空间有了一个大概的了解之后,我们开始学习该名称空间下的第一个子类Bayesian_filter::Bayes_filter_base. 该类与其子类的继承关系图如下图所示. ...
- Bayes++ Library入门学习之熟悉UKF相关类
UKF-SLAM是一种比较流行SLAM方案.相比EKF-SLAM,UKF利用unscented transform代替了EKF的线性化趋近,因而具有更高的精度.Bayes++库中的unsFlt.hpp ...
- Bayes++ Library入门学习之熟悉namespace
Bayes++是一个开源的C++类库.这些类表示并实现了用于离散系统的贝叶斯滤波的各种数值算法.该库中的类提供测试和一致的数值方法,并且用层次明确的结构表明了各种滤波算法和系统模型类型. 接下来,我们 ...
- Bayes++ Library入门学习之熟悉class-Importance_resampler
接下来,需要介绍的是重要性重采样类Bayesian_filter::Improtance_resampler.该类实现了两种重采样方法[1][2],和其子类的继承关系图如下: 其中Standard_r ...
- OpenCV入门学习笔记
OpenCV入门学习笔记 参照OpenCV中文论坛相关文档(http://www.opencv.org.cn/) 一.简介 OpenCV(Open Source Computer Vision),开源 ...
- SCARA——OpenGL入门学习一、二
参考博客:http://www.cppblog.com/doing5552/archive/2009/01/08/71532.html 简介 最近开始一个机械手臂的安装调试,平面关节型机器人又称SCA ...
- opengl入门学习
OpenGL入门学习 说起编程作图,大概还有很多人想起TC的#include <graphics.h>吧? 但是各位是否想过,那些画面绚丽的PC游戏是如何编写出来的?就靠TC那可怜的640 ...
- 转 iOS Core Animation 动画 入门学习(一)基础
iOS Core Animation 动画 入门学习(一)基础 reference:https://developer.apple.com/library/ios/documentation/Coco ...
- Aho-Corasick算法、多模正则匹配、Snort入门学习
希望解决的问题 . 在一些高流量.高IO的WAF中,是如何对规则库(POST.GET)中的字符串进行多正则匹配的,是单条轮询执行,还是多模式并发执行 . Snort是怎么组织.匹配高达上千条的正则规则 ...
随机推荐
- pandaboard安装ubuntu
参照:https://wiki.ubuntu.com/ARM/OmapDesktopInstall 主要是在linux下安装,主要命令为: zcat ./ubuntu-12.04-preinstall ...
- hdu_2191多重背包
用二维数组解的,因为忘了memset害我wa了好几发... #include<iostream> #include<cstdio> #include<cstring> ...
- bzoj3262: 陌上花开(cdq分治+树状数组)
3262: 陌上花开 题目:传送门 题解: %%%cdq分治 很强大的一个暴力...感觉比分块高级多了 这道题目就是一个十分经典的三维偏序的例题: 一维直接暴力排序x 二维用csq维护y 三维用树状数 ...
- HD-ACM算法专攻系列(9)——大菲波数
题目描述: 源码: 运用Java大数求解. import java.math.BigInteger; import java.util.*; public class Main { //主函数 pub ...
- IP地址的正则表达式写法
这里讲的是IPv4的地址格式,总长度 32位=4段*8位,每段之间用.分割, 每段都是0-255之间的十进制数值. 将0-255用正则表达式表示,可以分成一下几块来分别考虑: 取值区间 特点 正则写法 ...
- setUserVisibleHint的使用.执行顺序和viewPager.setOffscreenPageLimit(0)不管用还是默认会加载第二个fragment
处理问题一:viewPager.setOffscreenPageLimit(0)不管用还是默认会加载第二个fragment的原因(源码解读); 处理问题二:setUserVisibleHint的使用场 ...
- 关于注意力机制(《Attention is all you need》)
深度学习做NLP的方法,基本上都是先将句子分词,然后每个词转化为对应的词向量序列.(https://kexue.fm/archives/4765) 第一个思路是RNN层,递归进行,但是RNN无法很好地 ...
- MySQL常用技能篇
写在之前的话: 之前一直在用MSSERVER,刚用MySQL时有很多的不适应.就此小结一下工作中遇到的问题和场景(用的不是很深入,供初学者参考),文中出现的局限性欢迎指出 MySQL有客户端式(SQL ...
- 手把手教你如何新建scrapy爬虫框架的第一个项目(上)
前几天给大家分享了如何在Windows下创建网络爬虫虚拟环境及如何安装Scrapy,还有Scrapy安装过程中常见的问题总结及其对应的解决方法,感兴趣的小伙伴可以戳链接进去查看.关于Scrapy的介绍 ...
- [SDOI2008]沙拉公主的困惑 线性筛_欧拉函数_逆元_快速幂
Code: #include<cstdio> using namespace std; typedef long long ll; const int maxn=10000000+1; l ...