五、高维数据映射为低维数据

换一个坐标轴。在新的坐标轴里面表示原来高维的数据。

低维 反向 映射为高维数据

PCA.py

import numpy as np

class PCA:

    def __init__(self, n_components):
"""初始化PCA"""
assert n_components >= 1, "n_components must be valid"
self.n_components = n_components
self.components_ = None def fit(self, X, eta=0.01, n_iters=1e4):
"""获得数据集X的前n个主成分"""
assert self.n_components <= X.shape[1], \
"n_components must not be greater than the feature number of X" def demean(X):
return X - np.mean(X, axis=0) def f(w, X):
return np.sum((X.dot(w) ** 2)) / len(X) def df(w, X):
return X.T.dot(X.dot(w)) * 2. / len(X) def direction(w):
return w / np.linalg.norm(w) def first_component(X, initial_w, eta=0.01, n_iters=1e4, epsilon=1e-8): w = direction(initial_w)
cur_iter = 0 while cur_iter < n_iters:
gradient = df(w, X)
last_w = w
w = w + eta * gradient
w = direction(w)
if (abs(f(w, X) - f(last_w, X)) < epsilon):
break cur_iter += 1 return w X_pca = demean(X)
self.components_ = np.empty(shape=(self.n_components, X.shape[1]))
for i in range(self.n_components):
initial_w = np.random.random(X_pca.shape[1])
w = first_component(X_pca, initial_w, eta, n_iters)
self.components_[i,:] = w X_pca = X_pca - X_pca.dot(w).reshape(-1, 1) * w return self def transform(self, X):
"""将给定的X,映射到各个主成分分量中"""
assert X.shape[1] == self.components_.shape[1] return X.dot(self.components_.T) def inverse_transform(self, X):
"""将给定的X,反向映射回原来的特征空间"""
assert X.shape[1] == self.components_.shape[0] return X.dot(self.components_) def __repr__(self):
return "PCA(n_components=%d)" % self.n_components

六、scikit-learn 中的 PCA

七、试手MNIST数据集

通过单幅图像数据的高维化,将单幅图像转化为高维空间中的数据集合,对其进行非线性降维,寻求其高维数据流形本征结构的一维表示向量,将其作为图像数据的特征表达向量。从而将高维图像识别问题转化为特征表达向量的识别问题,大大降低了计算的复杂程度,减少了冗余信息所造成的识别误差,提高了识别的精度。通过指纹图像的实例说明,将非线性降维方法(如Laplacian Eigenmap方法)应用于图像数据识别问题,在实际中是可行的,在计算上是简单的,可大大改善常用方法(如K-近邻方法)的效能,获得更好的识别效果。此外,该方法对于图像数据是否配准是不敏感的,可对不同大小的图像进行识别,这大大简化了识别的过程

八、使用PCA对数据进行降噪

九、人脸识别与特征脸

我写的文章只是我自己对bobo老师讲课内容的理解和整理,也只是我自己的弊见。bobo老师的课 是慕课网出品的。欢迎大家一起学习。

机器学习(七) PCA与梯度上升法 (下)的更多相关文章

  1. 机器学习(七) PCA与梯度上升法 (上)

    一.什么是PCA 主成分分析 Principal Component Analysis 一个非监督学的学习算法 主要用于数据的降维 通过降维,可以发现更便于人类理解的特征 其他应用:可视化:去噪 第一 ...

  2. 机器学习(4)——PCA与梯度上升法

    主成分分析(Principal Component Analysis) 一个非监督的机器学习算法 主要用于数据的降维 通过降维,可以发现更便于人类理解的特征 其他应用:可视化.去噪 通过映射,我们可以 ...

  3. 4.pca与梯度上升法

    (一)什么是pca pca,也就是主成分分析法(principal component analysis),主要是用来对数据集进行降维处理.举个最简单的例子,我要根据姓名.年龄.头发的长度.身高.体重 ...

  4. 第7章 PCA与梯度上升法

    主成分分析法:主要作用是降维 疑似右侧比较好? 第三种降维方式: 问题:????? 方差:描述样本整体分布的疏密的指标,方差越大,样本之间越稀疏:越小,越密集 第一步: 总结: 问题:????怎样使其 ...

  5. 机器学习:PCA(使用梯度上升法求解数据主成分 Ⅰ )

    一.目标函数的梯度求解公式 PCA 降维的具体实现,转变为: 方案:梯度上升法优化效用函数,找到其最大值时对应的主成分 w : 效用函数中,向量 w 是变量: 在最终要求取降维后的数据集时,w 是参数 ...

  6. 机器学习:PCA(高维数据映射为低维数据 封装&调用)

    一.基础理解 1) PCA 降维的基本原理 寻找另外一个坐标系,新坐标系中的坐标轴以此表示原来样本的重要程度,也就是主成分:取出前 k 个主成分,将数据映射到这 k 个坐标轴上,获得一个低维的数据集. ...

  7. 机器学习:PCA(基础理解、降维理解)

    PCA(Principal Component Analysis) 一.指导思想 降维是实现数据优化的手段,主成分分析(PCA)是实现降维的手段: 降维是在训练算法模型前对数据集进行处理,会丢失信息. ...

  8. 机器学习算法-PCA降维技术

    机器学习算法-PCA降维 一.引言 在实际的数据分析问题中我们遇到的问题通常有较高维数的特征,在进行实际的数据分析的时候,我们并不会将所有的特征都用于算法的训练,而是挑选出我们认为可能对目标有影响的特 ...

  9. 机器学习算法的调试---梯度检验(Gradient Checking)

    梯度检验是一种对求导结果进行数值检验的方法,该方法可以验证求导代码是否正确. 1. 数学原理   考虑我们想要最小化以 θ 为自变量的目标函数 J(θ)(θ 可以为标量和可以为矢量,在 Numpy 的 ...

随机推荐

  1. 基础数位DP小结

    HDU 3555 Bomb dp[i][0] 表示含 i 位数的方案总和. sp[i][0] 表示对于位数为len 的 num 在区间[ 10^(i-1) , num/(10^(len-i)) ] 内 ...

  2. shareSDK的初步使用(shareSDK中微信、qq等兼容问题,以及cocoapods支持架构冲突问题的解决)

    第一次使用shareSDK来做第三方分享,可是.昨天一天都是在调试bug,一直错误不断! 先说下我的开发环境: xcode:5.1 真机调试:iPhone5s 我们都知道xcode5.1以后開始是支持 ...

  3. python微框架Bottle(http)

    环境: win7系统 Python2.7 一 背景和概述 眼下项目中须要加入一个激活码功能,打算单独弄一个httpserver来写. 由于之前的游戏中已经有了一套完整的激活码生成工具和验证httpse ...

  4. ElasticSearch 深入理解 三:集群部署设计

    ElasticSearch 深入理解 三:集群部署设计 ElasticSearch从名字中也可以知道,它的Elastic跟Search是同等重要的,甚至以Elastic为主要导向. Elastic即可 ...

  5. div在父集高度未知的情况下垂直居中的方法

    父集高度未知,子集高度已知: 可以使用弹性盒来解决: justify-content属性定义了项目在主轴上的对齐方式. align-items属性定义项目在交叉轴上如何对齐.

  6. POJ 3188暴搜

    题意: 思路: 裸的暴搜 --. 但是要注意如果你不用所有的按键就能输出最优解的话一定要把所有的字母都安排到一个位置-. 我的一群PE就是这么来的-- 为什么写的人这么少-- // by Sirius ...

  7. KMP算法中求next数组的实质

    在串匹配模式中,KMP算法较蛮力法是高效的算法,我觉得其中最重要的一点就是求next数组: 看了很多资料才弄明白求next数组是怎么求的,我发现我的忘性真的比记性大很多,每次看到KMP算法求next数 ...

  8. python 3.x 学习笔记12 (反射 and 异常)

    1.反射通过字符串映射或修改程序运行时的状态.属性.方法 getattr(obj,name_str):  根据字符串name_str去获取obj对象里的对应的方法的内存地址 hasttr(obj,na ...

  9. POJ 2481 Cows【树状数组】

    题意:给出n头牛的s,e 如果有两头牛,现在si <= sj && ei >= ej 那么称牛i比牛j强壮 然后问每头牛都有几头牛比它强壮 先按照s从小到大排序,然后用e来 ...

  10. rman备份工具简介

    RMAN工具简介: 备份的文件: 数据文件 归档日志 控制文件(当前控制文件) spfile 自动管理备份相关元数据 文件名称 完成备份的scn 以数据块为单位,只备份使用过的数据块(物理层面判断是否 ...