上一节简单介绍了Spark的基本原理以及如何调用spark进行打包一个独立应用,那么这节我们来学习下在spark中如何编程,同样先抛出以下几个问题。

  • Spark支持的数据集,如何理解?
  • Spark编程中常用到的操作?

一、RDD基础

  1、RDD简介

  在上一节的组件图Spark Core中我们简单提到了对弹性分布式数据集:RDD(Resilient Distributed DataSet),它表示分布在多个计算节点上可以并行操作的元素集合,是Spark主要得编程抽象。一般我们广为熟知的数值类型是整型、字符型等,那么RDD是包含这些任意数值类型的不可变对象。在实际编程中,和其他数值类型除了操作不同外并没有直观的区别。

  2、惰性求值

  为了节省空间和提高运算效率,Spark使用惰性求值的方式将一些操作合并到一起来减少计算数据的步骤,这就使得RDD支持两种类型的操作:转化操作和行动操作。转化操作会由一个RDD生成另一个新的RDD,而行动操作是会对RDD计算出一个结果,并将结果返回到驱动程序中或者存储到外部存储系统中。

  转化操作是惰性求值的,意思就是在调用行动操作之前Spark是不会开始真正计算的,它只会使用谱系图来记录这些不同RDD之间的依赖关系,这样就可以在后期行动操作时按需计算真正需要的数据,也可以依靠谱系图在持久化的RDD丢失部分数据时恢复所丢失的数据。例如,在行动操作 first() 中,Saprk只需要扫描文件直到找到第一个数据为止,不需要读取整个文件。默认情况下,Spark的RDD会在每次行动操作时重新计算,如果多个行动操作重用同一个RDD,建议使用RDD.persist(),把该RDD缓存下来,避免不必要的重复计算。

  那么如何区分结果是由转化操作还是行动操作计算而来的呢?可以观察结果的数据类型,转化操作返回的是RDD,而行动操作返回的是其他的数值型类型。

  3、一般流程

  每个Spark程序无外乎如下几个步骤:

  (1)从外部数据创建出输入的RDD

  (2)使用诸如 filter() 这样的转化操作对RDD进行转化,以定义新的RDD

  (3)对需要重用的中间结果进行缓存

  (4)使用行动操作来触发并行计算

二、RDD常用操作

  1、创建RDD

  以下两种创建RDD的方式相比,第一种较为常用,因为第二种方式需要整个数据集首先放在一台机器内存中。

  (1)外部数据的读取

val test_rdd = sc.textFile("hdfs:///user/test.txt")

  (2)驱动程序中的集合并行化

val test1_rdd = sc.parallelize(["pandas","noodles","dog"])
val test2_rdd = sc.makeRDD(["pandas","noodles","dog"]) 

  2、转化操作

  (1)针对RDD中各元素的操作

函数 作用
map()(常用) 将函数应用于RDD中每个元素,将返回值构成新的RDD
flatMap()(常用) 将函数引用于RDD中每个元素,将返回的迭代器的所有内容取出重新构成新的RDD

filter()(常用)

filter()的参数为布尔函数,返回满足该布尔函数的元素构成新的RDD
distinct() 去重
sample(withReplacement,[seed]) 对RDD采样,以及是否替换

  

  (2)对RDD进行伪集合的操作

函数 作用
union() 生成一个包含两个RDD中所有元素的RDD,不去重。类似并集
intersection() 将两个RDD共同的元素构成新的RDD,去重。类似交集
substract() 在左边RDD中移除右边RDD中的内容,类似左连接
cartesian() 与另一个RDD笛卡尔积

  3、行动操作

函数 作用
collect()(常用) 返回RDD中全部元素
count()(常用) 返回RDD中元素个数
countByValue()(常用) 返回各元素在RDD中出现的次数,返回类型为元组的集合
take(num)(常用) 返回RDD中num个元素
top(num) 返回RDD中最前面的num个元素
takeOrder(num)(ordering) 从RDD中按照提供的顺序返回最前面的num个元素
takeSample(withReplacement,num,[seed]) 从RDD中返回任意些元素
reduce(func)(常用) 并行整合RDD中所有数据,类似sum
fold(zero)(func) 和reduce()一样,但是需要提供初始值
aggregate(zeroValue)(seq0p, comb0p) 和reduce()相似,但是通常返回不同类型的函数
foreach(func)(常用) 遍历RDD中每个元素使用传入的函数

  4、持久化

  由于Spark RDD是惰性求值的,当我们每次调用行动操作时,都会重算RDD的所有依赖,如果多次行动操作使用同一个RDD,就会导致大量的重复运算。为避免这种现象,可以对数据进行持久化,也就是存储该RDD,保存在各自的分区中。出于不同的目的,可以为RDD选择不同的持久化级别,如下所示:

级别 使用的空间 CPU时间 是否在内存 是否在磁盘 备注
MEMORY_ONLY  
MEMORY_ONLY_SER  
MEMORY_AND_DISK 中等 部分 部分 如果数据在内存放不下,溢写到磁盘上
MEMORY_AND_DISK_SER 部分 部分 如果数据在内存放不下,溢写到磁盘上,在内存中放序列化后的数据
DISK_ONLY  

  scala中使用 persist() 进行缓存,unpersist()方法可以手动地把持久化RDD从缓存中移除。示例:

import org.apache.spark.storage.StorageLevel
val result = input.map(x => x*x)
result.persist(StorageLevel.DISK_ONLY)
println(result.count())
println(result.collect().mkstring(","))

结束语:纵使掌握了操作RDD的常用函数,但在实际运用中仍然会出现许多疑问。在做项目的过程中,我总结的一些踩坑经验会留在下一节中讲解~

参考:Spark大数据快速分析

小白学习Spark系列三:RDD常用方法总结的更多相关文章

  1. 小白学习Spark系列四:RDD踩坑总结(scala+spark2.1 sql常用方法)

    初次尝试用 Spark+scala 完成项目的重构,由于两者之前都没接触过,所以边学边用的过程大多艰难.首先面临的是如何快速上手,然后是代码调优.性能调优.本章主要记录自己在项目中遇到的问题以及解决方 ...

  2. 小白学习Spark系列一:Spark简介

    由于最近在工作中刚接触到scala和Spark,并且作为python中毒者,爬行过程很是艰难,所以这一系列分为几个部分记录下学习<Spark快速大数据分析>的知识点以及自己在工程中遇到的小 ...

  3. 小白学习Spark系列六:Spark调参优化

    前几节介绍了下常用的函数和常踩的坑以及如何打包程序,现在来说下如何调参优化.当我们开发完一个项目,测试完成后,就要提交到服务器上运行,但运行不稳定,老是抛出如下异常,这就很纳闷了呀,明明测试上没问题, ...

  4. 小白学习Spark系列五:scala解析多级json格式字符串

    一.背景 处理json格式的字符串,key值一定为String类型,但value不确定是什么类型,也可能嵌套json字符串,以下是使用 JSON.parseFull 来解析多层json. 二.实例代码 ...

  5. 小白学习Spark系列二:spark应用打包傻瓜式教程(IntelliJ+maven 和 pycharm+jar)

    在做spark项目时,我们常常面临如何在本地将其打包,上传至装有spark服务器上运行的问题.下面是我在项目中尝试的两种方案,也踩了不少坑,两者相比,方案一比较简单,本博客提供的jar包适用于spar ...

  6. spark教程(三)-RDD认知与创建

    RDD 介绍 spark 最重要的一个概念叫 RDD,Resilient Distributed Dataset,弹性分布式数据集,它是 spark 的最基本的数据(也是计算)抽象. 代码中是一个抽象 ...

  7. spark 系列之一 RDD的使用

    spark中常用的两种数据类型,一个是RDD,一个是DataFrame,本篇主要介绍RDD的一些应用场景见代码本代码的应用场景是在spark本地调试(windows环境) /** * 创建 spark ...

  8. [纯小白学习OpenCV系列]官方例程00:世界观与方法论

    2015-11-11 ----------------------------------------------------------------------------------- 其实,写博 ...

  9. Telegram学习解析系列(三) : Build Telegram报错分析总结

    正好通过这次 Telegram 的运行,很想把常见的项目运行的错误好好的总结一下,在前面的博客中,又星星散散的总结过错误和一些警告的消除方法,这次把错误处理一下,还有Telegram项目中有999+的 ...

随机推荐

  1. JS-正则表达式实战篇(Angel著)

    JS-正则表达式实战篇(Angel著) 大家会看到我最新的系列博客都是spring boot怎么突然来了一个js的呢,而且这个貌似对大家而言好像很简单的嘛,所以在写之前我说说我写这一篇文章的初衷.公司 ...

  2. 洛谷 P1595 信封问题

    题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n 输出格式: 一个整数,代表有多少种情况. 输入输出样例 输 ...

  3. Js计算指定日期

    function DateAdd(interval,number,date) { /* * 功能:实现VBScript的DateAdd功能. * 参数:interval,字符串表达式,表示要添加的时间 ...

  4. LINQ体验(8)——LINQ to SQL语句之Union All/Union/Intersect和Top/Bottom和Paging和SqlMethods

    我们继续解说LINQ to SQL语句,这篇我们来讨论Union All/Union/Intersect操作和Top/Bottom操作和Paging操作和SqlMethods操作 . Union Al ...

  5. fastjson null 值处理

    偶然用到fastjson转换json 在前台用js解析竟然某些字段没有,曾经用过gson.联想到是不是相似gson默认将null值不显示了,找了下资料果真如此 直接上代码吧 import java.u ...

  6. [Sencha ExtJS &amp; Touch] 在Sencha(Extjs/Touch)应用程序中使用plugins(插件)和mixins(混入)

    原文链接:http://blog.csdn.net/lovelyelfpop/article/details/50853591 英文原文:Using Plugins and Mixins in You ...

  7. Spring JDBC数据库开发

    针对数据库操作,Spring框架提供了JdbcTemplate类. 1.Spring JDBC的配置 创建配置文件applicationContext.xml,添加如下代码: <!--配置数据源 ...

  8. 二重积分的计算 —— 交换积分顺序(exchange the order of integration)

    交换积分顺序的诀窍在数形结合: 1. 几句顺口溜 后积先定限,限内穿条线,先交下限写,后交上限见 先积 x,画横线(平行于 x 轴),右减左: 先积 y,画竖线(平行于 y 轴),上减下: 2. 简单 ...

  9. Java访问HTTPS时证书验证问题

    为了尽可能避免安全问题,公司的很多系统服务都逐步https化,虽然开始过程会遇到各种问题,但趋势不改.最完美的https应用是能实现双向认证,客户端用私钥签名用服务端公钥加密,服务端用私钥签名客户端都 ...

  10. Java-JDK:JDK清单

    ylbtech-Java-JDK:JDK清单 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   作者:ylbtech出处:http://y ...