spark提交应用的方法(spark-submit)
参考自:https://spark.apache.org/docs/latest/submitting-applications.html
常见的语法:
./bin/spark-submit \
--class <main-class>
--master <master-url> \
--deploy-mode <deploy-mode> \
--conf <key>=<value> \
... # other options
<application-jar> \
[application-arguments]
举几个常用的用法例子:
# Run application locally on 8 cores
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master local[8] \
/path/to/examples.jar \
100 # Run on a Spark Standalone cluster in client deploy mode
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://207.184.161.138:7077 \
--executor-memory 20G \
--total-executor-cores 100 \
/path/to/examples.jar \
1000 # Run on a Spark Standalone cluster in cluster deploy mode with supervise
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://207.184.161.138:7077 \
--deploy-mode cluster
--supervise
--executor-memory 20G \
--total-executor-cores 100 \
/path/to/examples.jar \
1000 # Run on a YARN cluster
export HADOOP_CONF_DIR=XXX
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn-cluster \ # can also be `yarn-client` for client mode
--executor-memory 20G \
--num-executors 50 \
/path/to/examples.jar \
1000 # Run a Python application on a Spark Standalone cluster
./bin/spark-submit \
--master spark://207.184.161.138:7077 \
examples/src/main/python/pi.py \
1000
1、一引起重要的参数说明
(1)—-class: 主类,即main函数所有的类
(2)—- master : master的URL,见下面的详细说明。
(3)—-deploy-mode:client和cluster2种模式
(4)—-conf:指定key=value形式的配置
2、关于jar包
hadoop和spark的配置会被自动加载到SparkContext,因此,提交application时只需要提交用户的代码以及其它依赖包,这有2种做法:
(1)将用户代码打包成jar,然后在提交application时使用—-jar来添加依赖jar包
(2)将用户代码与依赖一起打包成一个大包 assembly jar (or “uber” jar)
关于依赖关系更详细的说明:
When using spark-submit
, the application jar along with any jars included with the --jars
option will be automatically transferred to the cluster. Spark uses the following URL scheme to allow different strategies for disseminating jars:
file: - Absolute paths and
file:/
URIs are served by the driver’s HTTP file server, and every executor pulls the file from the driver HTTP server.hdfs:, http:, https:, ftp: - these pull down files and JARs from the URI as expected
local: - a URI starting with local:/ is expected to exist as a local file on each worker node. This means that no network IO will be incurred, and works well for large files/JARs that are pushed to each worker, or shared via NFS, GlusterFS, etc.
Note that JARs and files are copied to the working directory for each SparkContext on the executor nodes. This can use up a significant amount of space over time and will need to be cleaned up. With YARN, cleanup is handled automatically, and with Spark standalone, automatic cleanup can be configured with the spark.worker.cleanup.appDataTtl
property.
Users may also include any other dependencies by supplying a comma-delimited list of maven coordinates with --packages
. All transitive dependencies will be handled when using this command. Additional repositories (or resolvers in SBT) can be added in a comma-delimited fashion with the flag --repositories
. These commands can be used with pyspark
, spark-shell
, and spark-submit
to include Spark Packages.
For Python, the equivalent --py-files
option can be used to distribute .egg
, .zip
and .py
libraries to executors.
3、关于master的值
(1)对于standalone模式,是spark://ip:port/的形式
(2)对于yarn,有yarn-cluster与yarn-cluster2种
(3)对于mesos,目前只有client选项
(4)除此之外,还有local[N]这种用于本地调试的选项
Master URL | Meaning |
---|---|
local | Run Spark locally with one worker thread (i.e. no parallelism at all). |
local[K] | Run Spark locally with K worker threads (ideally, set this to the number of cores on your machine). |
local[*] | Run Spark locally with as many worker threads as logical cores on your machine. |
spark://HOST:PORT | Connect to the given Spark standalone cluster master. The port must be whichever one your master is configured to use, which is 7077 by default. |
mesos://HOST:PORT | Connect to the given Mesos cluster. The port must be whichever one your is configured to use, which is 5050 by default. Or, for a Mesos cluster using ZooKeeper, use mesos://zk://... . |
yarn-client | Connect to a YARN cluster in client mode. The cluster location will be found based on the HADOOP_CONF_DIR or YARN_CONF_DIR variable. |
yarn-cluster | Connect to a YARN cluster in cluster mode. The cluster location will be found based on the HADOOP_CONF_DIR or YARN_CONF_DIR variable. |
4、关于client与cluster模式
A common deployment strategy is to submit your application from a gateway machine that is physically co-located with your worker machines (e.g. Master node in a standalone EC2 cluster). In this setup, client
mode is appropriate. In client
mode, the driver is launched directly within the spark-submit
process which acts as a client to the cluster. The input and output of the application is attached to the console. Thus, this mode is especially suitable for applications that involve the REPL (e.g. Spark shell).
Alternatively, if your application is submitted from a machine far from the worker machines (e.g. locally on your laptop), it is common to usecluster
mode to minimize network latency between the drivers and the executors. Note that cluster
mode is currently not supported for Mesos clusters. Currently only YARN supports cluster mode for Python applications.
5、加载本地的配置文件
The spark-submit
script can load default Spark configuration values from a properties file and pass them on to your application. By default it will read options from conf/spark-defaults.conf
in the Spark directory. For more detail, see the section on loading default configurations.
Loading default Spark configurations this way can obviate the need for certain flags to spark-submit
. For instance, if the spark.master
property is set, you can safely omit the --master
flag from spark-submit
. In general, configuration values explicitly set on a SparkConf
take the highest precedence, then flags passed to spark-submit
, then values in the defaults file.
If you are ever unclear where configuration options are coming from, you can print out fine-grained debugging information by running spark-submit
with the --verbose
option.
附spark-submit的完整命令:
hadoop@gdc-nn01-logtest:~/spark$ bin/spark-submit
Usage: spark-submit [options] [app arguments]
Usage: spark-submit --kill [submission ID] --master [spark://...]
Usage: spark-submit --status [submission ID] --master [spark://...] Options:
--master MASTER_URL spark://host:port, mesos://host:port, yarn, or local.
--deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or
on one of the worker machines inside the cluster ("cluster")
(Default: client).
--class CLASS_NAME Your application's main class (for Java / Scala apps).
--name NAME A name of your application.
--jars JARS Comma-separated list of local jars to include on the driver
and executor classpaths.
--packages Comma-separated list of maven coordinates of jars to include
on the driver and executor classpaths. Will search the local
maven repo, then maven central and any additional remote
repositories given by --repositories. The format for the
coordinates should be groupId:artifactId:version.
--repositories Comma-separated list of additional remote repositories to
search for the maven coordinates given with --packages.
--py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place
on the PYTHONPATH for Python apps.
--files FILES Comma-separated list of files to be placed in the working
directory of each executor. --conf PROP=VALUE Arbitrary Spark configuration property.
--properties-file FILE Path to a file from which to load extra properties. If not
specified, this will look for conf/spark-defaults.conf. --driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 512M).
--driver-java-options Extra Java options to pass to the driver.
--driver-library-path Extra library path entries to pass to the driver.
--driver-class-path Extra class path entries to pass to the driver. Note that
jars added with --jars are automatically included in the
classpath. --executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G). --proxy-user NAME User to impersonate when submitting the application. --help, -h Show this help message and exit
--verbose, -v Print additional debug output
--version, Print the version of current Spark Spark standalone with cluster deploy mode only:
--driver-cores NUM Cores for driver (Default: 1). Spark standalone or Mesos with cluster deploy mode only:
--supervise If given, restarts the driver on failure.
--kill SUBMISSION_ID If given, kills the driver specified.
--status SUBMISSION_ID If given, requests the status of the driver specified. Spark standalone and Mesos only:
--total-executor-cores NUM Total cores for all executors. Spark standalone and YARN only:
--executor-cores NUM Number of cores per executor. (Default: 1 in YARN mode,
or all available cores on the worker in standalone mode) YARN-only:
--driver-cores NUM Number of cores used by the driver, only in cluster mode
(Default: 1).
--queue QUEUE_NAME The YARN queue to submit to (Default: "default").
--num-executors NUM Number of executors to launch (Default: 2).
--archives ARCHIVES Comma separated list of archives to be extracted into the
working directory of each executor.
--principal PRINCIPAL Principal to be used to login to KDC, while running on
secure HDFS.
--keytab KEYTAB The full path to the file that contains the keytab for the
principal specified above. This keytab will be copied to
the node running the Application Master via the Secure
Distributed Cache, for renewing the login tickets and the
delegation tokens periodically. 15/07/22 11:03:25 INFO util.Utils: Shutdown hook called
spark提交应用的方法(spark-submit)的更多相关文章
- spark提交任务的三种的方法
在学习Spark过程中,资料中介绍的提交Spark Job的方式主要有三种: 第一种: 通过命令行的方式提交Job,使用spark 自带的spark-submit工具提交,官网和大多数参考资料都是已这 ...
- spark提交任务的两种的方法
在学习Spark过程中,资料中介绍的提交Spark Job的方式主要有两种(我所知道的): 第一种: 通过命令行的方式提交Job,使用spark 自带的spark-submit工具提交,官网和大多数参 ...
- Spark学习(四) -- Spark作业提交
标签(空格分隔): Spark 作业提交 先回顾一下WordCount的过程: sc.textFile("README.rd").flatMap(line => line.s ...
- spark提交任务的流程
1.spark提交流程 sparkContext其实是与一个集群建立一个链接,当你停掉它之后 就会和集群断开链接,则属于这个资源的Excutor就会释放掉了,Driver 向Master申请资源,Ma ...
- spark提交模式
spark基本的提交语句: ./bin/spark-submit \ --class <main-class> \ --master <master-url> \ --depl ...
- spark提交命令 spark-submit 的参数 executor-memory、executor-cores、num-executors、spark.default.parallelism分析
转载:https://blog.csdn.net/zimiao552147572/article/details/96482120 nohup spark-submit --master yarn - ...
- 提交jar作业到spark上运行
1.引入spark包:spark-assembly-1.4.0-hadoop2.6.0,在spark的lib目录下 File-->project structure 2.用IDEA建立一个sca ...
- Spark调研笔记第2篇 - 怎样通过Sparkclient向Spark提交任务
在上篇笔记的基础上,本文介绍Sparkclient的基本配置及Spark任务提交方式. 1. Sparkclient及基本配置 从Spark官网下载的pre-built包中集成了Sparkclient ...
- Spark With Mongodb 实现方法及error code -5, 6, 13127解决方案
1.spark mongo 读取 val rdd = MongoSpark.builder().sparkSession(spark).pipeline(Seq(`match`(regex(" ...
随机推荐
- Elasticsearch之源码编译
前期博客 Elasticsearch之下载源码 步骤 (1)首先去git下载源码 https://github.com/elastic/elasticsearch/tree/v2.4.3 下载下来,得 ...
- Kinect 开发 —— WaveHand
基本注释都写了,就不废话了 <Window x:Class="KinectBasicHandTrackingFrameworkTest.MainWindow" xmlns=& ...
- Oracle定义变量、常量
1 定义变量 declare var_countryname varchar2(50):='中国'; 2 定义常量 con_day constant integer:=365;
- 趣题: 按二进制中1的个数枚举1~2^n (位运算技巧)
; ; k <= n; k++){ << k)-,u = << n; s < u;){ ;i < n;i++) printf(-i)&); print ...
- VMware Vsphere 6.0安装部署 总体部署架构
(一)总体部署架构 本教程用于学习目的,力求详尽的介绍安装部署过程和各组件之间的关系,部署过程从最简单的模型开始,系列文章按时间顺序依次展开,每篇介绍一个组件. 开始阶段,按照一台物理服务器,部署所有 ...
- 【Henu ACM Round #12 A】 Grandma Laura and Apples
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 知道题意之后就是一个模拟的过程了. 用int now记录当前苹果的个数.bool flag记录是否有小数(即半个苹果) (这样处理为 ...
- 如何创建Hiren的BootCD USB磁盘 -- 制作U盘启动盘
如何创建Hiren的BootCD USB磁盘 原文 https://www.wintips.org/how-to-create-hirens-bootcd-usb-disk/ 本文基本是谷歌翻译 H ...
- 关于Sleep函数介绍
函数名: Sleep 功 能: 执行挂起一段时间 用 法: void Sleep(DWORD dwMilliseconds); 在VC中使用带上头文件 #include <windows.h&g ...
- Fedora 10下应用网络模拟器NS心得
650) this.width=650;" onclick='window.open("http://blog.51cto.com/viewpic.php?refimg=" ...
- Android 通过局域网udp广播自动建立socket连接
Android开发中经常会用到socket通讯.由于项目需要,最近研究了一下这方面的知识. 需求是想通过wifi实现android移动设备和android平台的电视之间的文件传输与控制. 毫无疑问这中 ...