POJ 1821 Fence(单调队列优化DP)
题解
以前做过很多单调队列优化DP的题。
这个题有一点不同是对于有的状态可以转移,有的状态不能转移。
然后一堆边界和注意点。导致写起来就很难受。
然后状态也比较难定义。
dp[i][j]代表前i个人涂完前j个位置的最大收益。
然后转移考虑
第i个人可以不刷。dp[i][j]=dp[i-1][j];
第j个木板可以不刷dp[i][j]=dp[i][j-1];
然后当c[i].s<=j<=s[i]+l[i]-1时
dp[i][j]=p[i]*j+max(dp[i-1][k]-p[i]*k)其中j-l[i]<=k<=s[i]-1;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
const int M=;
int dp[M][N],n,m,q[N],head,tail,ans;
struct people{
int l,p,s;
}c[M];
bool cmp(people a,people b){
return a.s<b.s;
}
int read(){
int sum=,f=;char ch=getchar();
while(ch<''||ch>''){
if(ch=='-')f=-;
ch=getchar();
}
while(ch>=''&&ch<=''){
sum=sum*+ch-'';
ch=getchar();
}
return sum;
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
memset(dp,,sizeof(dp));
for(int i=;i<=m;i++){
c[i].l=read();c[i].p=read();c[i].s=read();
}
sort(c+,c++m,cmp);
for(int i=;i<=m;i++){
memset(q,,sizeof(q));
head=;tail=;
for(int j=;j<=n;j++){
dp[i][j]=max(dp[i-][j],dp[i][j-]);
if(j>=c[i].s&&j<=c[i].s+c[i].l-){
while(head<=tail&&q[head]<j-c[i].l)head++;
if(head>tail)continue;
dp[i][j]=max(c[i].p*j+dp[i-][q[head]]-c[i].p*q[head],dp[i][j]);
}
if(j<c[i].s){
while(head<=tail&&dp[i-][j]-c[i].p*j>=dp[i-][q[tail]]-c[i].p*q[tail])tail--;
q[++tail]=j;
}
}
}
printf("%d\n",dp[m][n]);
}
return ;
}
POJ 1821 Fence(单调队列优化DP)的更多相关文章
- poj 1821 Fence 单调队列优化dp
/* poj 1821 n*n*m 暴力*/ #include<iostream> #include<cstdio> #include<cstring> #incl ...
- $Poj1821\ Fence\ $单调队列优化$DP$
Poj Acwing Description 有N块木板等待被M个工匠粉刷,每块木板至多被刷一次.第i个工匠要么不粉刷,要么粉刷包含木块Si的,长度不超过Li的连续的一段木板,每粉刷一块可以得到P ...
- Dividing the Path POJ - 2373(单调队列优化dp)
给出一个n长度的区间,然后有一些小区间只能被喷水一次,其他区间可以喷水多次,然后问你要把这个区间覆盖起来最小需要多少喷头,喷头的半径是[a, b]. 对于每个只能覆盖一次的区间,我们可以把他中间的部分 ...
- poj1821 Fence(单调队列优化dp)
地址 一排N个木板,M个工匠站在不同位置$S_i$,每个人可以粉刷覆盖他位置的.最长长度为$L_i$木板段,每刷一个有$P_i$报酬.同一木板只刷一次.求最大报酬. 根据每个人的位置dp,设$f[i] ...
- 单调队列优化DP——习题收集
前言 感觉可以用单调队列优化dp的模型还是挺活的,开个随笔记录一些遇到的比较有代表性的模型,断续更新.主要做一个收集整理总结工作. 记录 0x01 POJ - 1821 Fence,比较适合入门的题, ...
- 算法笔记--单调队列优化dp
单调队列:队列中元素单调递增或递减,可以用双端队列实现(deque),队列的前面和后面都可以入队出队. 单调队列优化dp: 问题引入: dp[i] = min( a[j] ) ,i-m < j ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
随机推荐
- 使用easyui combobox初始化+在input中触发下拉框+获取值
效果图: 1.html <input id="alarmLeve" class="easyui-combobox" name="alarmLev ...
- Jetty初探
一.在jetty中部署web应用 Jetty 和 Tomcat 一样都是一个web server的container, 用户可以在里面 deploy 自己的 war 包,然后启动 Jetty, 进而通 ...
- laravel contains 的用法
最近在学laravel,做一下学习笔记. 1.contains()方法判断集合是否包含给定的项目: ]);var_dump($collection->contains('Desk'));// t ...
- 51nod 1301 集合异或和(DP)
因为当\(A<B\)时,会存在在二进制下的一位,满足这一位B的这一位是\(1\),\(A\)的这一位是\(0\). 我们枚举最大的这一位.设为\(x\)吧. 设计状态.\(dp[i][j][1/ ...
- BZOJ 4016 [FJOI2014]最短路径树问题 (贪心+点分治)
题目大意:略 传送门 硬是把两个题拼到了一起= = $dijkstra$搜出单源最短路,然后$dfs$建树,如果$dis_{v}=dis_{u}+e.val$,说明这条边在最短路图内,然后像$NOIP ...
- [luogu2607 ZJOI2008] 骑士 (树形dp)
题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里, ...
- CRM系统 - 总结 (二) stark组件
介绍: stark组件,是一个帮助开发者快速实现数据库表的增删改查+的组件.目标: 10s 中完成一张表的增删改查. 前戏: django项目启动时,自定义执行某个py文件. django启动时,且在 ...
- [luogu] P3745 [六省联考2017]期末考试 (贪心)
P3745 [六省联考2017]期末考试 题目描述 有 \(n\) 位同学,每位同学都参加了全部的 \(m\) 门课程的期末考试,都在焦急的等待成绩的公布. 第 \(i\) 位同学希望在第 \(t_i ...
- POJ 3744
矩阵快速乘求概率,不难.但有注意的一点是,一定要注意地雷连着的情况,一旦出现两个雷相邻,就必定为0了. #include <iostream> #include <algorithm ...
- c#将List<T>转换成DataSet
/// <summary> /// List<T> 转换成DataSet /// </summary> /// &l ...