Source:

PAT A1150 Travelling Salesman Problem (25 分)

Description:

The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)

In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of cities, and M, the number of edges in an undirected graph. Then Mlines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:

n C​1​​ C​2​​ ... C​n​​

where n is the number of cities in the list, and C​i​​'s are the cities on a path.

Output Specification:

For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:

  • TS simple cycle if it is a simple cycle that visits every city;
  • TS cycle if it is a cycle that visits every city, but not a simple cycle;
  • Not a TS cycle if it is NOT a cycle that visits every city.

Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.

Sample Input:

6 10
6 2 1
3 4 1
1 5 1
2 5 1
3 1 8
4 1 6
1 6 1
6 3 1
1 2 1
4 5 1
7
7 5 1 4 3 6 2 5
7 6 1 3 4 5 2 6
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 2 5 4 3 1
7 6 3 2 5 4 1 6

Sample Output:

Path 1: 11 (TS simple cycle)
Path 2: 13 (TS simple cycle)
Path 3: 10 (Not a TS cycle)
Path 4: 8 (TS cycle)
Path 5: 3 (Not a TS cycle)
Path 6: 13 (Not a TS cycle)
Path 7: NA (Not a TS cycle)
Shortest Dist(4) = 8

Keys:

Attention:

  • 注意检查是否遍历了所有结点

Code:

 /*
Data: 2019-08-04 17:16:14
Problem: PAT_A1150#Travelling Salesman Problem
AC: 20:24 题目大意:
给出城市结点列表,及其路径,问遍历所有结点并返回初始结点的最短路径
现在给出一系列路径,找出能够遍历所有结点的最短回路
输入:
第一行给出,结点数2<N<=200,边数M
接下来M行, City1 City2 Distance, 1<=City<=N, 0<Dis<=100;
接下来一行,给出查询数K
接下来K行,首先给出城市数目N,接着依次给出N个城市
输出:
Path 1~K: 总距离/NA(不可达)
描述:
简单回路,TS simple cycle
非简单回路,TS cycle
非回路,Not a TS cycle(未回到起点或未遍历所有结点)
最后一行,输出所给回路中最短的一条
*/
#include<cstdio>
#include<set>
#include<algorithm>
using namespace std;
const int M=1e3,INF=1e9;
int grap[M][M],path[M]; int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("Test.txt", "r", stdin);
#endif // ONLINE_JUDGE fill(grap[],grap[]+M*M,INF);
int n,m,k,v1,v2;
scanf("%d%d", &n,&m);
for(int i=; i<m; i++)
{
scanf("%d%d", &v1,&v2);
scanf("%d", &grap[v1][v2]);
grap[v2][v1]=grap[v1][v2];
}
scanf("%d", &m);
int optJ,optValue=INF;
for(int j=; j<=m; j++)
{
scanf("%d", &k);
set<int> ver;
for(int i=; i<k; i++)
{
scanf("%d", &path[i]);
ver.insert(path[i]);
}
int reach=,value=;
for(int i=; i<k-; i++){
if(grap[path[i]][path[i+]] != INF)
value += grap[path[i]][path[i+]];
else
k=;
}
if(k==)
printf("Path %d: NA (Not a TS cycle)\n", j);
else
{
if(path[]!=path[k-] || ver.size()<n)
printf("Path %d: %d (Not a TS cycle)\n",j,value);
else
{
if(value < optValue)
{
optValue = value;
optJ = j;
}
if(k==n+)
printf("Path %d: %d (TS simple cycle)\n",j,value);
else
printf("Path %d: %d (TS cycle)\n",j,value);
}
}
}
printf("Shortest Dist(%d) = %d", optJ,optValue);
}

PAT_A1150#Travelling Salesman Problem的更多相关文章

  1. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  2. PAT 甲级 1150 Travelling Salesman Problem

    https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384 The "travelling ...

  3. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  4. 1150 Travelling Salesman Problem(25 分)

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  5. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  6. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

  7. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  8. 1150 Travelling Salesman Problem

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  9. PAT-1150(Travelling Salesman Problem)旅行商问题简化+模拟图+简单回路判断

    Travelling Salesman Problem PAT-1150 #include<iostream> #include<cstring> #include<st ...

随机推荐

  1. HTML5:去除IE10中输入框和密码框的X按钮和小眼睛

    在IE10和之后的IE版本中,当在输入框和密码框中输入的时候,后面会自动出现X按钮和小眼睛,如下图所示:  令人苦恼的是,这个效果只有IE才有,其它浏览器是没有这个功能的.为了统一,我们就需要去掉这个 ...

  2. HDU 5016 Mart Master II (树上点分治)

    题目地址:pid=5016">HDU 5016 先两遍DFS预处理出每一个点距近期的基站的距离与基站的编号. 然后找重心.求出每一个点距重心的距离.然后依据dis[x]+dis[y] ...

  3. C++ 移位运算与进制转换 浅析

    移位运算包括"逻辑移位"(logical shift)和"算术移位"(arithmetic shift). 逻辑移位:移出去的位丢弃,空缺位(vacant bi ...

  4. Building Maintainable Software-java篇之Couple Architecture Components Loosely

    Building Maintainable Software-java篇之Couple Architecture Components Loosely There are two ways of co ...

  5. VC UI界面库大集合

    Guitoolkit http://www.beyondata.com/pwc.html The Ultimate Toolbox http://www.codeproject.com/KB/MFC/ ...

  6. spring boot测试

    今天在springside里试了spring boot,果然很方便,内置容器,不需要配置web.xml,简单几个文件就可以实现增删改查操作,一些配置如tomcat端口之类的直接写在applicatio ...

  7. js实用篇之数组、字符串常用方法

    常常在开发中,会使用到很多js数组和字符串的处理方法,这里列举一些我常用到的一些,方便大家参考使用. 数组方面 push:向数组尾部增加内容,返回的是新数组的长度. var arr = [1,2,3] ...

  8. RabbitMQ安装后,BADARG问题

    最近RabbitMQ安装后始终不能运行,发现异常关键信息如下 =CRASH REPORT==== 10-Nov-2017::13:41:09 === crasher: initial call: ap ...

  9. [BZOJ1307][ZJOI2008]生日聚会PARTY

    ...一开始用了三维的...甚至尝试把它搞成二维的...后来发现根本没法转移呀... 既然dalao说这是初中题,那它就算是一道初中题吧... dp[i][j][k][p]表示当前有i个男生j个女生, ...

  10. 5.27 indeed 第三次网测

    1. 第一题, 没有看 2. 暴力枚举.每一个部分全排列, 然后求出最大的请求数. #include<bits/stdc++.h> #define pb push_back typedef ...