题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=2866

题意:在区间[2,L]内,有多少个素数p,满足方程有解。

分析:

原方程变为: n^(b-1) * (p+n) = m ^ b。

一开始,我们会想,这个方程在什么时候是有解的呢??

肯定当左边式子能够凑成形如  X^b 这样的式子对不对??

那么,也就是说,一定不存正整数k使得n = k*p。

即当且仅当gcd(n^(b-1),(p+n)) = 1时方程有解。

为什么??

我们利用反证法可以进行证明:

假设 gcd(n^(b-1) , (p+n)) != 1

则一定存在一个正整数k,使得 n = k*p。

则该等式转化为: (k+1)* k ^ (b-1) * p^b = m ^ b;

要使等式两边相等,那么(k+1)*k^(b-1)必须配成幂次b的形式。

又因为gcd(k,k+1) = 1。

所以它两无公因子,无法配成x的b次方形式。

所以当gcd(n^(b-1) , (p+n) )  != 1时该方程无解。

通过上面的证明,我们知道该方程有解的条件。

设 n = x ^ b,  p+n = y^b,

则 m = x ^(b-1) * y   ,  且p = y^b - x^b;

因为p = y^b-x^b = (y-x)*(y^(n-1)+y^(n-2)*x+...+x^(n-1)),

对于上面的式子来自幂方差公式: (a^n - b^n) =(a-b)(a^(n-1) + a^(n-2)*b + ... + b^(n-1))

所以 (y-x)|p ,又因为p为质数, 所以能整除p的只有1与p本身,很明显的, y-x != p ,所以  y-x=1, --->  y = x+1;

所以p = (x+1)^b-x^b;

所以我们只要枚举x然后计算出p并且判断其是否为质数即可。

下面帖代码,有问题留言。

    #include<cstdio>
#include<cstring>
typedef long long LL; bool is_prime(int n){
if(n <= )return false;
for(int i = ; i*i <= n; i++)
if(n % i == )return false;
return true;
} int main(){
int L;
while(~scanf("%d",&L)){
int ans = ;
int k = ;
while((LL)*(k+)*(k+)*(k+)-k*k*k <= L){
if(is_prime((LL)*(k+)*(k+)*(k+) - k*k*k))ans++;
k++;
}
if(ans == )printf("No Special Prime!\n");
else printf("%d\n",ans);
}
return ;
}

HDU2866 Special Prime的更多相关文章

  1. 题解-hdu2866 Special Prime

    Problem hdu-2866 题意:求区间\([2,L]\)有多少素数\(p\)满足\(n^3+pn^2=m^3\),其中\(n,m\)属于任意整数 Solution 原式等价于\(n^2(p+n ...

  2. 【HDU】2866:Special Prime【数论】

    Special Prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  3. Special Prime

    Special Prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  4. hdu-2886 Special Prime---数论推导

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2866 题目大意: 问你1到L中有多少个素数满足n^3 + p*n^2 = m^3(其中n,m为大于1 ...

  5. 字符串经典的hash算法

    1 概述 链表查找的时间效率为O(N),二分法为log2N,B+ Tree为log2N,但Hash链表查找的时间效率为O(1). 设计高效算法往往需要使用Hash链表,常数级的查找速度是任何别的算法无 ...

  6. 几种经典的Hash算法的实现(源代码)

    来源声明: http://blog.minidx.com/2008/01/27/446.html 先保存下来,以备后面研究,现在还看不懂! 哈希算法将任意长度的二进制值映射为固定长度的较小二进制值,这 ...

  7. hash算法和常见的hash函数 [转]

       Hash,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值. 这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能 会散列成相同的输出,而不 ...

  8. Java 素数 prime numbers-LeetCode 204

    Description: Count the number of prime numbers less than a non-negative number, n click to show more ...

  9. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

随机推荐

  1. mvn 仓库

    http://mvnrepository.com/artifact/org.postgresql/postgresql/9.3-1103-jdbc41 ------------------------ ...

  2. 多校第六场 1003 hdu 5355 Cake(贪心)

    题目链接:(数据加强后wa了) hdu 5355 题目大意: 给出一个蛋糕.切成1~n大小的n块.问是否能在不继续分割的情况下拼凑出m等份. 题目分析: 首先我们是可以知道每份蛋糕的尺寸的,利用n*( ...

  3. 使用Win32 API实现生产者消费者线程同步

    使用win32 API创建线程,创建信号量用于线程的同步 创建信号量 语法例如以下 HANDLE semophore; semophore = CreateSemaphore(lpSemaphoreA ...

  4. cocos2d js ClippingNode 制作标题闪亮特效

    1.效果图: 之前在<Android 高仿 IOS7 IPhone 解锁 Slide To Unlock>中制作了文字上闪亮移动的效果,这次我们来看下怎样在cocos2d js 中做出类似 ...

  5. Codeforces Round #Pi (Div. 2) —— C-Geometric Progression

    题意: 如今有n个数,然后给出一个数k(代表的是等比数列中的那个公比),然后第二行给出n个数,代表的是这个序列. 最后的问题是叫你找出在这个序列中满足公比为k的三个数有几种.并输出方案总数. 思路: ...

  6. caffe源代码分析--softmax_layer.cpp

    caffe源代码分析--softmax_layer.cpp // Copyright 2013 Yangqing Jia // #include <algorithm> #include ...

  7. web.xml整理

    web.xml,部署描写叙述符文件(专业术语).是在Servlet规范中定义的.是web应用的配置文件(Servlet 3.0已開始放弃使用web.xml,转而使用annotation注解来配置项目) ...

  8. hdu 5094 Maze bfs

    传送门:上海邀请赛E 给定一个n×m的迷宫,给出相邻格子之间的墙或者门的信息,墙说明不可走,假设是门则须要有相应的钥匙才干通过,问是否可以从(1,1)到达(n,m) 一个带状态的bfs,再另记一个状态 ...

  9. Android中关闭DatePicker、TimePicker、NumberPicker的可编辑模式

    DatePicker.TimePicker.NumberPicker这三个控件在使用的过程中,用户点击数字会弹出键盘,有时候会造成布局被挤压不好看,也有其他的需求. 我看了网上很多文章的解决办法都无效 ...

  10. pandas把多个sheet读进一个DataFrame

    #!/usr/bin/python import pandas as pd import collections df_dict = pd.read_excel('c:\data\machines.x ...