Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现、分类、聚类等。Mahout最大的优点就是基于hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能。

一、Mahout安装、配置

1、下载并解压Mahout
http://archive.apache.org/dist/mahout/
tar -zxvf mahout-distribution-0.9.tar.gz

2、配置环境变量
# set mahout environment
export MAHOUT_HOME=/mnt/jediael/mahout/mahout-distribution-0.9
export MAHOUT_CONF_DIR=$MAHOUT_HOME/conf
export PATH=$MAHOUT_HOME/conf:$MAHOUT_HOME/bin:$PATH

3、安装mahout
[jediael@master mahout-distribution-0.9]$ pwd
/mnt/jediael/mahout/mahout-distribution-0.9
[jediael@master mahout-distribution-0.9]$ mvn install

4、验证Mahout是否安装成功
    执行命令mahout。若列出一些算法,则成功:

[jediael@master mahout-distribution-0.9]$ mahout
Running on hadoop, using /mnt/jediael/hadoop-1.2.1/bin/hadoop and HADOOP_CONF_DIR=
MAHOUT-JOB: /mnt/jediael/mahout/mahout-distribution-0.9/examples/target/mahout-examples-0.9-job.jar
An example program must be given as the first argument.
Valid program names are:
arff.vector: : Generate Vectors from an ARFF file or directory
baumwelch: : Baum-Welch algorithm for unsupervised HMM training
canopy: : Canopy clustering
cat: : Print a file or resource as the logistic regression models would see it
cleansvd: : Cleanup and verification of SVD output
clusterdump: : Dump cluster output to text
clusterpp: : Groups Clustering Output In Clusters
cmdump: : Dump confusion matrix in HTML or text formats
concatmatrices: : Concatenates 2 matrices of same cardinality into a single matrix
cvb: : LDA via Collapsed Variation Bayes (0th deriv. approx)
cvb0_local: : LDA via Collapsed Variation Bayes, in memory locally.
evaluateFactorization: : compute RMSE and MAE of a rating matrix factorization against probes
fkmeans: : Fuzzy K-means clustering
hmmpredict: : Generate random sequence of observations by given HMM
itemsimilarity: : Compute the item-item-similarities for item-based collaborative filtering
kmeans: : K-means clustering
lucene.vector: : Generate Vectors from a Lucene index
lucene2seq: : Generate Text SequenceFiles from a Lucene index
matrixdump: : Dump matrix in CSV format
matrixmult: : Take the product of two matrices
parallelALS: : ALS-WR factorization of a rating matrix
qualcluster: : Runs clustering experiments and summarizes results in a CSV
recommendfactorized: : Compute recommendations using the factorization of a rating matrix
recommenditembased: : Compute recommendations using item-based collaborative filtering
regexconverter: : Convert text files on a per line basis based on regular expressions
resplit: : Splits a set of SequenceFiles into a number of equal splits
rowid: : Map SequenceFile<Text,VectorWritable> to {SequenceFile<IntWritable,VectorWritable>, SequenceFile<IntWritable,Text>}
rowsimilarity: : Compute the pairwise similarities of the rows of a matrix
runAdaptiveLogistic: : Score new production data using a probably trained and validated AdaptivelogisticRegression model
runlogistic: : Run a logistic regression model against CSV data
seq2encoded: : Encoded Sparse Vector generation from Text sequence files
seq2sparse: : Sparse Vector generation from Text sequence files
seqdirectory: : Generate sequence files (of Text) from a directory
seqdumper: : Generic Sequence File dumper
seqmailarchives: : Creates SequenceFile from a directory containing gzipped mail archives
seqwiki: : Wikipedia xml dump to sequence file
spectralkmeans: : Spectral k-means clustering
split: : Split Input data into test and train sets
splitDataset: : split a rating dataset into training and probe parts
ssvd: : Stochastic SVD
streamingkmeans: : Streaming k-means clustering
svd: : Lanczos Singular Value Decomposition
testnb: : Test the Vector-based Bayes classifier
trainAdaptiveLogistic: : Train an AdaptivelogisticRegression model
trainlogistic: : Train a logistic regression using stochastic gradient descent
trainnb: : Train the Vector-based Bayes classifier
transpose: : Take the transpose of a matrix
validateAdaptiveLogistic: : Validate an AdaptivelogisticRegression model against hold-out data set
vecdist: : Compute the distances between a set of Vectors (or Cluster or Canopy, they must fit in memory) and a list of Vectors
vectordump: : Dump vectors from a sequence file to text
viterbi: : Viterbi decoding of hidden states from given output states sequence

二、使用简单示例验证mahout
1、启动Hadoop
2、下载测试数据
           http://archive.ics.uci.edu/ml/databases/synthetic_control/链接中的synthetic_control.data
或者百度一下也很容易找到这个示例数据。
3、上传测试数据
hadoop fs -put synthetic_control.data testdata
4、 使用Mahout中的kmeans聚类算法,执行命令:
mahout -core  org.apache.mahout.clustering.syntheticcontrol.kmeans.Job
花费9分钟左右完成聚类 。
5、查看聚类结果
    执行hadoop fs -ls /user/root/output,查看聚类结果。

[jediael@master mahout-distribution-0.9]$ hadoop fs -ls output
Found 15 items
-rw-r--r-- 2 jediael supergroup 194 2015-03-07 15:07 /user/jediael/output/_policy
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:07 /user/jediael/output/clusteredPoints
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/clusters-0
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/clusters-1
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:07 /user/jediael/output/clusters-10-final
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:03 /user/jediael/output/clusters-2
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:03 /user/jediael/output/clusters-3
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:04 /user/jediael/output/clusters-4
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:04 /user/jediael/output/clusters-5
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:05 /user/jediael/output/clusters-6
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:05 /user/jediael/output/clusters-7
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:06 /user/jediael/output/clusters-8
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:07 /user/jediael/output/clusters-9
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/data
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/random-seeds
 
 

版权声明:本文为博主原创文章,未经博主允许不得转载。

Mahout快速入门教程 分类: B10_计算机基础 2015-03-07 16:20 508人阅读 评论(0) 收藏的更多相关文章

  1. Json入门 分类: C_OHTERS 2014-04-23 16:20 601人阅读 评论(0) 收藏

    参考<疯狂android讲义>>730页 JSON的基础请参考W3SCHOOL的教程: http://www.w3school.com.cn/json/index.asp 例子: h ...

  2. CocoaPods安装和使用教程 分类: ios技术 ios相关 2015-03-11 21:53 48人阅读 评论(0) 收藏

    目录 CocoaPods是什么? 如何下载和安装CocoaPods? 如何使用CocoaPods? 场景1:利用CocoaPods,在项目中导入AFNetworking类库 场景2:如何正确编译运行一 ...

  3. shell入门之流程控制语句 分类: 学习笔记 linux ubuntu 2015-07-10 16:38 89人阅读 评论(0) 收藏

    1.case 脚本: #!/bin/bash #a test about case case $1 in "lenve") echo "input lenve" ...

  4. 总结分享十大iOS开发者最喜爱的库 分类: ios相关 app相关 2015-04-03 16:43 320人阅读 评论(0) 收藏

    该10大iOS开发者最喜爱的库由"iOS辅导团队"成员Marcelo Fabri组织投票选举而得,参与者包括开发者团队,iOS辅导团队以及行业嘉宾.每个团队都要根据以下规则选出五个 ...

  5. Currency Exchange 分类: POJ 2015-07-14 16:20 10人阅读 评论(0) 收藏

    Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22180 Accepted: 8015 De ...

  6. ubuntu中安装samba 分类: linux 学习笔记 ubuntu 2015-07-07 16:14 46人阅读 评论(0) 收藏

    为了方便的和Windows之间进行交互,samba必不可少. 当然,他的安装使用也很简单: 安装: sudo apt-get install samba sudo apt-get install sm ...

  7. linux中的网络通信指令 分类: 学习笔记 linux ubuntu 2015-07-06 16:02 134人阅读 评论(0) 收藏

    1.write write命令通信是一对一的通信,即两个人之间的通信,如上图. 效果图 用法:write <用户名> 2.wall wall指令可将信息发送给每位同意接收公众信息的终端机用 ...

  8. ubuntu文件管理常用命令 分类: linux ubuntu 学习笔记 2015-07-02 16:57 29人阅读 评论(0) 收藏

    1.关闭防火墙:ufw disable 2.以.开头的表示隐藏文件 3..和..分别代表当前目录以及当前目录的父目录 4.显示当前用户所在目录pwd 5.touch创建空文件 6.mkdir创建新目录 ...

  9. iOS开源库--最全的整理 分类: ios相关 2015-04-08 09:20 486人阅读 评论(0) 收藏

    youtube下载神器:https://github.com/rg3/youtube-dl 我擦咧 vim插件:https://github.com/Valloric/YouCompleteMe vi ...

随机推荐

  1. [lougu2243]双端队列搜索

    正统双端队列搜索 回顾:普通队列进行边权为定值的最短路 每次到达都是最优的(意味着不用取min) why? 因为所有状态按照 入队的先后顺序 具有 层次单调性,每次扩展,都往外走一步,满足从起始到该状 ...

  2. VMware Vsphere 6.0安装部署 Vsphere ESXi安装

    Vsphere ESXi安装 ESXi作为虚拟化环境的Hypervisor层,负责将服务器虚拟成资源池,提供接口供管理组件调用,将下面的iso刻录成光盘或可启动U盘,安装在服务器裸机上: 下载地址请见 ...

  3. Python day4知识回顾

    # -*- coding: utf_8 _*_# Author:Vi#字典是无序的 info = { 'student001':"DIO", 'student002':" ...

  4. 细说 iOS 消息推送

    APNS的推送机制 与Android上我们自己实现的推送服务不一样,Apple对设备的控制很严格.消息推送的流程必需要经过APNs: 这里 Provider 是指某个应用的Developer,当然假设 ...

  5. 例说linux内核与应用数据通信(四):映射设备内核空间到用户态

    [版权声明:尊重原创,转载请保留出处:blog.csdn.net/shallnet.文章仅供学习交流,请勿用于商业用途]         一个进程的内存映象由以下几部分组成:代码段.数据段.BSS段和 ...

  6. css 兼容性前缀

    一.不同浏览器内核下的书写规则 二:transform  具体变性中心基点  transform-origin  默认情况下  rotate旋转.scale缩放.translate位移.矩阵matri ...

  7. jQuery高级选择器和其等价方法

    jQuery选择器和css一样,但兼容性更好 <body> <p>p1</p> <p>p1</p> <p>p1</p> ...

  8. LAN8720A网络模块的使用问题

    一.LAN8720A模块驱动电路 最近在调试STM32F4驱动LAN8720A网络模块,在做方案前参考是正点原子的LAN8720A的驱动电路方案,但是从网上买回来的LAN8720A模块用正点原子的例程 ...

  9. linux下多进程的文件拷贝与进程相关的一些基础知识

    之前实现了用文件IO的方式能够实现文件的拷贝,那么对于进程而言,我们是否也能够实现呢? 答案是肯定的. 进程资源: 首先我们先回想一下,进程的执行须要哪些资源呢?其资源包含CPU资源,内存资源,当然还 ...

  10. 8.spring-boot配置log4j

    转自:https://www.cnblogs.com/qixing/p/7763582.html <dependency> <groupId>org.springframewo ...