一道好题。

由算术基本定理,知:

那么,对于上式的每个因子值只能是2^M的形式。取第一个式子为例,通过分解因式出(1+p^2)=2^k知,a只能为1.

于是对于p只能是梅森素数。而且每个梅森素数只能出现一次,利用这个就可以求解了,

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std;
const int Max=1<<8; int Mec[10]={(1<<2)-1,(1<<3)-1,(1<<5)-1,(1<<7)-1,(1<<13)-1,(1<<17)-1,(1<<19)-1,(1<<31)-1,0,0};
int vp[10]={2,3,5,7,13,17,19,31,0,0};
int v[150],tans[150],tp;
bool p[Max]; int judge(int t){
int ans=0;
for(int i=0;i<8;i++){
if(t%Mec[i]==0){
ans|=(1<<i);
t/=Mec[i];
}
}
if(t==1)
return ans;
else return 0;
} int main(){
int t;
while(scanf("%d",&t)!=EOF){
tp=0;
int ans=0;
for(int i=0;i<t;i++)
scanf("%d",&v[i]);
memset(p,false,sizeof(p));
p[0]=true;
for(int i=0;i<t;i++){
int tmp=judge(v[i]);
if(tmp){
p[tmp]=true;
tans[tp++]=tmp;
}
}
for(int i=0;i<tp;i++){
for(int k=0;k<Max;k++){
if(p[k]){
if(!(k&tans[i]))
p[k|tans[i]]=true;
}
}
}
int e;
for(int i=Max-1;i>=0;i--)
if(p[i]){
int c=0;
for(int k=0;k<8;k++){
e=(1<<k);
if(e&i)
c+=vp[k];
}
ans=max(ans,c);
}
if(!ans){
printf("NO\n");
continue;
}
printf("%d\n",ans);
}
return 0;
}

  

POJ 1777的更多相关文章

  1. POJ 1777 mason素数

    题目大意: 给定数列 a1 , a2 , ... , an 希望找到一个  N = sigma(ai^ki)  , (0<=ki<10) ,ki可随自己定为什么 只要保证N的因子和可以表示 ...

  2. [ACM] POJ 3686 The Windy&#39;s (二分图最小权匹配,KM算法,特殊建图)

    The Windy's Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4158   Accepted: 1777 Descr ...

  3. poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】

    题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...

  4. POJ中和质数相关的三个例题(POJ 2262、POJ 2739、POJ 3006)

    质数(prime number)又称素数,有无限个.一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数:否则称为合数.      最小的质数 ...

  5. POJ 3090 Visible Lattice Points (ZOJ 2777)

    http://poj.org/problem?id=3090 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1777 题目大意: ...

  6. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  7. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  8. POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治

    The Pilots Brothers' refrigerator Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22286 ...

  9. POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37427   Accepted: 16288 Descr ...

随机推荐

  1. 坚向的ViewPager,上下滑动的组件,android上下滑动 VerticalPager

    package com.zhulin.android.atools; import android.content.Context; import android.util.AttributeSet; ...

  2. [ACM] HDU 5086 Revenge of Segment Tree(全部连续区间的和)

    Revenge of Segment Tree Problem Description In computer science, a segment tree is a tree data struc ...

  3. beisen

    #include <stdio.h> #include <pthread.h> #include <windows.h> #define N 100 #define ...

  4. ubuntu下如何查看和设置分辨率

    ubuntu下如何查看和设置分辨率 在ubuntu下可以使用xrandr来设置自己需要的分辨率.大致步骤如下:  www.2cto.com   1.使用xrandr命令查看屏幕分辨率,这里我使用的是显 ...

  5. 【转】git rebase简介(基本篇)

    原文网址:http://blog.csdn.net/hudashi/article/details/7664631/ 原文: http://gitbook.liuhui998.com/4_2.html ...

  6. weixin js接口

    <!DOCTYPE HTML><html><head> <meta http-equiv="content-type" content=& ...

  7. ubuntu-设置分辨率

    xrandr -s 1440x900 -r 60 前提是,分辨率选项中有对应的设置选项.

  8. (转)Java进阶java int与Integer的区别

    Java进阶java int与Integer的区别 前言 int与Integer的区别从大的方面来说就是基本数据类型与其包装类的区别: int 是基本类型,直接存数值,而Integer是对象,用一个引 ...

  9. 二.Windows I/O模型之异步选择(WSAAsyncSelect)模型

    1.基于windows消息为基础的网络事件io模型.因此我们必须要在窗口程序中使用该模型.该模型中的核心是调用WSAAsyncSelect函数实现异步I/O. 2.WSAAsyncSelect函数:注 ...

  10. 极光推送设置标签和别名无效的解决办法:JPush设置别名不走成功回调

    极光推送设置标签和别名无效的解决办法 JPush设置别名不走成功回调的解决办法 http://www.cnblogs.com/chenqitao/p/5506023.html 主要是网络加载过快导致的 ...