一道好题。

由算术基本定理,知:

那么,对于上式的每个因子值只能是2^M的形式。取第一个式子为例,通过分解因式出(1+p^2)=2^k知,a只能为1.

于是对于p只能是梅森素数。而且每个梅森素数只能出现一次,利用这个就可以求解了,

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std;
const int Max=1<<8; int Mec[10]={(1<<2)-1,(1<<3)-1,(1<<5)-1,(1<<7)-1,(1<<13)-1,(1<<17)-1,(1<<19)-1,(1<<31)-1,0,0};
int vp[10]={2,3,5,7,13,17,19,31,0,0};
int v[150],tans[150],tp;
bool p[Max]; int judge(int t){
int ans=0;
for(int i=0;i<8;i++){
if(t%Mec[i]==0){
ans|=(1<<i);
t/=Mec[i];
}
}
if(t==1)
return ans;
else return 0;
} int main(){
int t;
while(scanf("%d",&t)!=EOF){
tp=0;
int ans=0;
for(int i=0;i<t;i++)
scanf("%d",&v[i]);
memset(p,false,sizeof(p));
p[0]=true;
for(int i=0;i<t;i++){
int tmp=judge(v[i]);
if(tmp){
p[tmp]=true;
tans[tp++]=tmp;
}
}
for(int i=0;i<tp;i++){
for(int k=0;k<Max;k++){
if(p[k]){
if(!(k&tans[i]))
p[k|tans[i]]=true;
}
}
}
int e;
for(int i=Max-1;i>=0;i--)
if(p[i]){
int c=0;
for(int k=0;k<8;k++){
e=(1<<k);
if(e&i)
c+=vp[k];
}
ans=max(ans,c);
}
if(!ans){
printf("NO\n");
continue;
}
printf("%d\n",ans);
}
return 0;
}

  

POJ 1777的更多相关文章

  1. POJ 1777 mason素数

    题目大意: 给定数列 a1 , a2 , ... , an 希望找到一个  N = sigma(ai^ki)  , (0<=ki<10) ,ki可随自己定为什么 只要保证N的因子和可以表示 ...

  2. [ACM] POJ 3686 The Windy&#39;s (二分图最小权匹配,KM算法,特殊建图)

    The Windy's Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4158   Accepted: 1777 Descr ...

  3. poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】

    题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...

  4. POJ中和质数相关的三个例题(POJ 2262、POJ 2739、POJ 3006)

    质数(prime number)又称素数,有无限个.一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数:否则称为合数.      最小的质数 ...

  5. POJ 3090 Visible Lattice Points (ZOJ 2777)

    http://poj.org/problem?id=3090 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1777 题目大意: ...

  6. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  7. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  8. POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治

    The Pilots Brothers' refrigerator Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22286 ...

  9. POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37427   Accepted: 16288 Descr ...

随机推荐

  1. HDU 4386 Quadrilateral(数学啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4386 Problem Description One day the little Jack is p ...

  2. apt-get常见错误

      安装错误:“E: Unmet dependencies.” 原因:非正常停止apt-get install * 错误提示:E: Unmet dependencies. Try 'apt-get - ...

  3. Dijkstra算法原理及证明(转)

    Dijkstra算法及其证明 算法: 设G是带权图,图中的顶点多于一个,且所有的权都为正数.本算法确定从顶点S到G中其他各个顶点的距离和最短通路.在本算法中P表示带永久标记的顶点的集合.顶点A的前驱是 ...

  4. WinForm中DataReader绑定到DataGridView的两种方法

    在WinForm中,DataReader是不能直接绑定到DataGridView的,我想到了用两种方法来实现将DataReader绑定到DataGridView. SqlCommand command ...

  5. [Offer收割]编程练习赛42

    对局匹配 直接贪心 #pragma comment(linker, "/STACK:102400000,102400000") #include<stdio.h> #i ...

  6. 学习环境搭建2——安装django

    下载django https://www.djangoproject.com/download/ 选择最新的版本Latest release,下载后解压.在含有setup.py的文件夹中执行如下命令: ...

  7. python爬虫:读取PDF

    下面的代码可以实现用python读取PDF,包括读取本地和网络上的PDF. pdfminer下载地址:https://pypi.python.org/packages/source/p/pdfmine ...

  8. 图像的全局特征--LBP特征

    原文链接:http://blog.csdn.net/zouxy09/article/details/7929531#comments 这个特征或许对三维图像特征提取有很大作用.文章有修改,如有疑问,请 ...

  9. 杭电2602 Bone Collector 【01背包】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 解题思路:给出一个容量为V的包,以及n个物品,每一个物品的耗费的费用记作c[i](即该物品的体积 ...

  10. Swift语法3.03(类型Types)

    类型 在Swift中,有两种类型:命名型类型和复合型类型.命名型类型是在定义时可以给定的特定名字的类型.命名型类型包括类,结构体,枚举和协议.例如,自定义的类MyClass的实例拥有类型MyClass ...