近期,线上一些内存占用比較敏感的应用。在訪问峰值的时候,偶尔会被kill掉,导致服务重新启动。发现是Linux的out-of-memory kiiler的机制触发的。

http://linux-mm.org/OOM_Killer

oom kiiler会在内存紧张的时候,会依次kill内存占用较高的进程,发送Signal 15(SIGTERM)。并在/var/log/message中进行记录。里面会记录一些如pid,process name。cpu mask,trace等信息,通过监控能够发现类似问题。

今天特意分析了一下oom killer相关的选择机制。挖了一下代码。感觉该机制简单粗暴。只是效果还是挺明显的。给大家分享出来。

  • oom killer初探

        一个简单分配heap memroy的代码片段(big_mm.c):
#define block (1024L*1024L*MB)
#define MB 64L
unsigned long total = 0L;
for(;;) {
// malloc big block memory and ZERO it !!
char* mm = (char*) malloc(block);
usleep(100000);
if (NULL == mm)
continue;
bzero(mm,block);
total += MB;
fprintf(stdout,"alloc %lum mem\n",total);
}

这里有2个地方须要注意:

        
        1、malloc是分配虚拟地址空间,假设不memset或者bzero,那么就不会触发physical allocate,不会映射物理地址,所以这里用bzero填充
        2、每次申请的block大小比較有讲究。Linux内核分为LowMemroy和HighMemroy,LowMemory为内存紧张资源,LowMemroy有个阀值,通过free -lm和

/proc/sys/vm/lowmem_reserve_ratio来查看当前low大小和阀值low大小。低于阀值时候才会触发oom killer,所以这里block的分配小雨默认的256M,否则假设每次申请512M(大于128M),malloc可能会被底层的brk这个syscall堵塞住,内核触发page cache回写或slab回收。

 測试:

       gcc big_mm.c -o big_mm ; ./big_mm & ./big_mm & ./big_mm &

       (同一时候启动多个big_mm进程争抢内存)       

       启动后,部分big_mm被killed。在/var/log/message下tail -n 1000 | grep -i oom 看到:

Apr 18 16:56:16 v125000100.bja kernel: : [22254383.898423] Out of memory: Kill process 24894 (big_mm) score 277 or sacrifice child
Apr 18 16:56:16 v125000100.bja kernel: : [22254383.899708] Killed process 24894, UID 55120, (big_mm) total-vm:2301932kB, anon-rss:2228452kB, file-rss:24kB
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738942] big_mm invoked oom-killer: gfp_mask=0x280da, order=0, oom_adj=0, oom_score_adj=0
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738947] big_mm cpuset=/ mems_allowed=0
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738950] Pid: 24893, comm: big_mm Not tainted 2.6.32-220.23.2.ali878.el6.x86_64 #1
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738952] Call Trace:
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738961] [<ffffffff810c35e1>] ? cpuset_print_task_mems_allowed+0x91/0xb0
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738968] [<ffffffff81114d70>] ? dump_header+0x90/0x1b0
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738973] [<ffffffff810e1b2e>] ? __delayacct_freepages_end+0x2e/0x30
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738979] [<ffffffff81213ffc>] ? security_real_capable_noaudit+0x3c/0x70
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738982] [<ffffffff811151fa>] ? oom_kill_process+0x8a/0x2c0
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738985] [<ffffffff81115131>] ? select_bad_process+0xe1/0x120
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738989] [<ffffffff81115650>] ? out_of_memory+0x220/0x3c0
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.738995] [<ffffffff81125929>] ? __alloc_pages_nodemask+0x899/0x930
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.739001] [<ffffffff81159c6a>] ? alloc_pages_vma+0x9a/0x150

通过标红的部分能够看到big_mm占用了2301932K,anon-rss所有是mmap分配的大内存块。后面红色的CallTrace标识出来kernel oom-killer的stack,后面我们会针对该call trace分析一下oom killer的代码。

  • oom killer机制分析

我们触发了oom killer的机制。那么oom killer是计算出选择哪个进程kill呢?我们先来看一下kernel提供给用户态的/proc下的一些參数:

/proc/[pid]/oom_adj ,该pid进程被oom killer杀掉的权重,介于 [-17,15]之间,越高的权重,意味着更可能被oom killer选中,-17表示禁止被kill掉。

/proc/[pid]/oom_score,当前该pid进程的被kill的分数。越高的分数意味着越可能被kill,这个数值是依据oom_adj运算后的结果,是oom_killer的主要參考。

sysctl 下有2个可配置选项:

vm.panic_on_oom = 0         #内存不够时内核是否直接panic

                vm.oom_kill_allocating_task = 1        #oom-killer是否选择当前正在申请内存的进程进行kill

触发oom killer时/var/log/message打印了进程的score:

Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758297] [ pid ]   uid  tgid total_vm      rss cpu oom_adj oom_score_adj name
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758311] [ 399] 0 399 2709 133 2 -17 -1000 udevd
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758314] [ 810] 0 810 2847 43 0 0 0 svscanboot
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758317] [ 824] 0 824 1039 21 0 0 0 svscan
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758320] [ 825] 0 825 993 17 1 0 0 readproctitle
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758322] [ 826] 0 826 996 16 0 0 0 supervise
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758325] [ 827] 0 827 996 17 0 0 0 supervise
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758327] [ 828] 0 828 996 16 0 0 0 supervise
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758330] [ 829] 0 829 996 17 2 0 0 supervise
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758333] [ 830] 0 830 6471 152 0 0 0 run
Apr 18 16:56:18 v125000100.bja kernel: : [22254386.758335] [ 831] 99 831 1032 21 0 0 0 multilog

所以。假设想改动被oom killer选中的概率,改动上树參数就可以。

  • oom killer 代码分析

上面已经给出了相应策略,以下剖析一下kernel相应的代码。有个清晰认识。

代码选择的是kernel 3.0.12的代码,源代码文件 mm/oom_kill.c。首先看一下call trace调用关系:

__alloc_pages_nodemask分配内存 -> 发现内存不足(或低于low memory)out_of_memory -> 选中一个得分最高的processor进行select_bad_process -> kill

/**
* out_of_memory - kill the "best" process when we run out of memory
*/
void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
int order, nodemask_t *nodemask, bool force_kill)
{
// 等待notifier调用链返回,假设有内存了则返回
blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
if (freed > 0)
return; // 假设进程即将退出,则表明可能会有内存能够使用了,返回
if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
set_thread_flag(TIF_MEMDIE);
return;
} // 假设设置了sysctl的panic_on_oom,则内核直接panic
check_panic_on_oom(constraint, gfp_mask, order, mpol_mask); // 假设设置了oom_kill_allocating_task
// 则杀死正在申请内存的process
if (sysctl_oom_kill_allocating_task && current->mm &&
!oom_unkillable_task(current, NULL, nodemask) &&
current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
get_task_struct(current);
oom_kill_process(current, gfp_mask, order, 0, totalpages, NULL,
nodemask,
"Out of memory (oom_kill_allocating_task)");
goto out;
} // 用select_bad_process()选择badness指
// 数(oom_score)最高的进程
p = select_bad_process(&points, totalpages, mpol_mask, force_kill); if (!p) {
dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
panic("Out of memory and no killable processes...\n");
}
if (p != (void *)-1UL) {
// 查看child process, 是否是要被killed,则直接影响当前这个parent进程
oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
nodemask, "Out of memory");
killed = 1;
}
out: if (killed)
schedule_timeout_killable(1);
}

select_bad_process() 调用oom_badness计算权值:

/**
* oom_badness - heuristic function to determine which candidate task to kill
*
*/
unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
const nodemask_t *nodemask, unsigned long totalpages)
{
long points;
long adj; // 内部推断是否是pid为1的initd进程,是否是kthread内核进程。是否是其它cgroup。假设是则跳过
if (oom_unkillable_task(p, memcg, nodemask))
return 0; p = find_lock_task_mm(p);
if (!p)
return 0; // 获得/proc/[pid]/oom_adj权值,假设是OOM_SCORE_ADJ_MIN则返回
adj = (long)p->signal->oom_score_adj;
if (adj == OOM_SCORE_ADJ_MIN) {
task_unlock(p);
return 0;
} // 获得进程RSS和swap内存占用
points = get_mm_rss(p->mm) + p->mm->nr_ptes +
get_mm_counter(p->mm, MM_SWAPENTS);
task_unlock(p); // 计算过程例如以下。【计算逻辑比較简单,不赘述了】
if (has_capability_noaudit(p, CAP_SYS_ADMIN))
adj -= 30;
adj *= totalpages / 1000;
points += adj; return points > 0 ? points : 1; }

总结,大家能够依据上述策略调整oom killer,禁止或者给oom_adj最小或偏小的值,也能够通过sysctl调节oom killer行为!


















Linux -- 内存控制之oom killer机制及代码分析的更多相关文章

  1. Linux内核OOM killer机制

    程序运行了一段时间,有个进程挂掉了,正常情况下进程不会主动挂掉,简单分析后认为可能是运行时某段时间内存占用过大,系统内存不足导致触发了Linux操作系统OOM killer机制,将运行中的进程杀掉了. ...

  2. Linux内存管理 (21)OOM

    专题:Linux内存管理专题 关键词:OOM.oom_adj.oom_score.badness. Linux内核为了提高内存的使用效率采用过度分配内存(over-commit memory)的办法, ...

  3. Linux系统OOM killer机制详解

    介绍: Linux下面有个特性叫OOM killer(Out Of Memory killer),会在系统内存耗尽的情况下出现,选择性的干掉一些进程以求释放一些内存.广大从事Linux方面的IT农民工 ...

  4. linux如何查看进程OOM killer

    基本概念: Linux 内核有个机制叫OOM killer(Out-Of-Memory killer),该机制会监控那些占用内存过大,尤其是瞬间很快消耗大量内存的进程,为了防止内存耗尽而内核会把该进程 ...

  5. Linux时间子系统(十七) ARM generic timer驱动代码分析

    一.前言 关注ARM平台上timer driver(clocksource chip driver和clockevent chip driver)的驱动工程师应该会注意到timer硬件的演化过程.在单 ...

  6. Spring Cloud 请求重试机制核心代码分析

    场景 发布微服务的操作一般都是打完新代码的包,kill掉在跑的应用,替换新的包,启动. spring cloud 中使用eureka为注册中心,它是允许服务列表数据的延迟性的,就是说即使应用已经不在服 ...

  7. Linux下OOM Killer机制详解

    http://www.cnblogs.com/ylqmf/archive/2012/11/05/2754795.html http://wuquan-1230.blog.163.com/blog/st ...

  8. linux内存管理及手动释放机制

    inux系统中查看内存状态一般都会用到free linux的free命令中,cached和buffers的区别 Free Mem:表示物理内存统计 -/+ buffers/cached:表示物理内存的 ...

  9. Android:内存控制及OOM处理

      1. OOM(内存溢出)和Memory Leak(内存泄露)有什么关系? OOM可能是因为Memory Leak,也可能是你的应用本身就比较耗内存(比如图片浏览型的).所以,出现OOM不一定是Me ...

随机推荐

  1. Lua相关回调总结【转】

    原文 http://www.zaojiahua.com/lua-callback-functions.html 最近做一个小项目,是用Lua写的,中间用到了很多的回调,基本Cocos中的那几种常用回调 ...

  2. 联想 K10(K10e70) 免解锁BL 免rec Magisk Xposed 救砖 ROOT 版本号 S206

    >>>重点介绍<<< 第一:本刷机包可卡刷可线刷,刷机包比较大的原因是采用同时兼容卡刷和线刷的格式,所以比较大第二:[卡刷方法]卡刷不要解压刷机包,直接传入手机后用 ...

  3. webSocket客服在线交谈

    一>用户端 <%@ page language="java" pageEncoding="UTF-8" %><%@ taglib uri ...

  4. JS——缓慢动画封装

    在知道如何获取内嵌式和外链式的标签属性值之后,我们再次封装缓慢动画: 单个属性 <!DOCTYPE html> <html> <head lang="en&qu ...

  5. JS——for

    打印两行星星: <script> for (var i = 0; i < 2; i++) { for (var j = 0; j < 10; j++) { document.w ...

  6. 初识关系型数据库(SQL)与非关系型数据库(NOSQL)

    一.关系型数据库(SQL): Mysql,oracle 特点:数据和数据之间,表和字段之间,表和表之间是存在关系的 例如:部门表 001部分,   员工表 001 用户表,用户名.密码 分类表 和 商 ...

  7. [Windows Server 2008] ASP.net安装方法

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频.★ 本节我们将带领大家:安装ASP.n ...

  8. 拍拍贷投资工具|拍拍贷投标工具|PPD投标工具|PPD投资工具介绍

    我们先来分析一下现在市场上在PPD投资的途径: 其他解决方案 1.在网站或者手机客户端手动投标 这种方法对于非常小额的资金是可以的,稍微多一点就会发现不可行,目前PPD手动刷新出来的标几乎都是你刚刷新 ...

  9. C# Winform 获得下拉框 选中的值

    string PrintName = cmbPrinter.SelectedIndex.ToString(); PrintName = cmbPrinter.SelectedItem.ToString ...

  10. POJ-2135-Farm Tour(最大费用最小流)模板

    Farm Tour POJ - 2135 When FJ's friends visit him on the farm, he likes to show them around. His farm ...