Codeforces Round #198 (Div. 2)

昨天看到奋斗群的群赛,好奇的去做了一下,

大概花了3个小时Ak,我大概可以退役了吧

那下面来稍微总结一下

A. The Wall

Iahub and his friend Floyd have started painting a wall. Iahub is painting the wall red and Floyd is painting it pink. You can consider the wall being made of a very large number of bricks, numbered 1, 2, 3 and so on.

Iahub has the following scheme of painting: he skips x - 1 consecutive bricks, then he paints the x-th one. That is, he'll paint bricks x, 2·x, 3·x and so on red. Similarly, Floyd skips y - 1 consecutive bricks, then he paints the y-th one. Hence he'll paint bricks y, 2·y, 3·y and so on pink.

After painting the wall all day, the boys observed that some bricks are painted both red and pink. Iahub has a lucky number a and Floyd has a lucky number b. Boys wonder how many bricks numbered no less than a and no greater than b are painted both red and pink. This is exactly your task: compute and print the answer to the question.

input
2 3 6 18
output
3
Note

Let's look at the bricks from a to b (a = 6, b = 18). The bricks colored in red are numbered 6, 8, 10, 12, 14, 16, 18. The bricks colored in pink are numbered 6, 9, 12, 15, 18. The bricks colored in both red and pink are numbered with 6, 12 and 18.

一句话题意:给你a,b,n,m,求在[n,m](闭区间)内有多少个数可以同时整除a和b

很显然非常清真的一道A题,题意很明晰,

求出a,b的最小公倍数,然后求出n以内和m以内各有几个,

最后相减,注意因为是闭区间,所以要特判n是否符合

#include<bits/stdc++.h>
using namespace std;
int main(){
int a,b,n,m;
scanf("%d%d%d%d",&a,&b,&n,&m);
int lcs=a/__gcd(a,b)*b,ans1=n/lcs,ans2=m/lcs;
if (n%lcs==) ans1--;
printf("%d",ans2-ans1);
}

B. Maximal Area Quadrilateral

Iahub has drawn a set of n points in the cartesian plane which he calls "special points". A quadrilateral is a simple polygon without self-intersections with four sides (also called edges) and four vertices (also called corners). Please note that a quadrilateral doesn't have to be convex. A special quadrilateral is one which has all four vertices in the set of special points. Given the set of special points, please calculate the maximal area of a special quadrilateral.

input
5
0 0
0 4
4 0
4 4
2 3
output
16.000000
Note

In the test example we can choose first 4 points to be the vertices of the quadrilateral. They form a square by side 4, so the area is 4·4 = 16.

一句话题意:给你n个点,让你选出四个点,使得这四个点组成的四边形面积最大

感觉这道题其实有D题的难度,可参见考试时A掉人数:A>D>C>B>E

首先我们可以把一个四边形分成两个三角形来求

这样那我们可以O(n^2)枚举对角线,然后就可以求出上三角形的最大值和下三角形的最大值

我们就可以得出最大的四边形的面积,

求三角形面积可以用叉积,这样,就可以得到了O(n^3)的了

***如果不会叉积的,极力推荐去学习一下计算几何初步

#include <cstdio>
#include <complex>
#include <algorithm>
using namespace std;
typedef complex<int> xint;
const int inf=;
xint point[];
int crs(xint a,xint b){
return (a.real()*b.imag()-a.imag()*b.real());
} int main(){
int n,s=; scanf("%d",&n);
for (int i=,x,y;i<n&&==scanf("%d %d",&x,&y);++i)
point[i]=xint(x,y);
for (int i=;i<n;++i)
for (int j=i+;j<n;++j){
int a=inf,b=-inf;
for (int k=;k<n;++k){
int c=crs(point[k]-point[i],point[j]-point[i]);
if(c<) a=min(a,c); else if(c>) b=max(b,c);
if(a<&&b>) s=max(s,b-a);
}
}
printf("%.8lf\n",s/2.0);
}

Codeforces Round #198 (Div. 2)A,B题解的更多相关文章

  1. Codeforces Round #198 (Div. 2)C,D题解

    接着是C,D的题解 C. Tourist Problem Iahub is a big fan of tourists. He wants to become a tourist himself, s ...

  2. Codeforces Round #612 (Div. 2) 前四题题解

    这场比赛的出题人挺有意思,全部magic成了青色. 还有题目中的图片特别有趣. 晚上没打,开virtual contest打的,就会前三道,我太菜了. 最后看着题解补了第四道. 比赛传送门 A. An ...

  3. Codeforces Round #672 (Div. 2) A - C1题解

    [Codeforces Round #672 (Div. 2) A - C1 ] 题目链接# A. Cubes Sorting 思路: " If Wheatley needs more th ...

  4. Codeforces Round #198 (Div. 2)E题解

    E. Iahub and Permutations Iahub is so happy about inventing bubble sort graphs that he's staying all ...

  5. Codeforces Round #198 (Div. 2) E. Iahub and Permutations —— 容斥原理

    题目链接:http://codeforces.com/contest/340/problem/E E. Iahub and Permutations time limit per test 1 sec ...

  6. Codeforces Round #614 (Div. 2) A-E简要题解

    链接:https://codeforces.com/contest/1293 A. ConneR and the A.R.C. Markland-N 题意:略 思路:上下枚举1000次扫一遍,比较一下 ...

  7. Codeforces Round #610 (Div. 2) A-E简要题解

    contest链接: https://codeforces.com/contest/1282 A. Temporarily unavailable 题意: 给一个区间L,R通有网络,有个点x,在x+r ...

  8. Codeforces Round #611 (Div. 3) A-F简要题解

    contest链接:https://codeforces.com/contest/1283 A. Minutes Before the New Year 题意:给一个当前时间,输出离第二天差多少分钟 ...

  9. Codeforces Round #198 (Div. 1) D. Iahub and Xors 二维树状数组*

    D. Iahub and Xors   Iahub does not like background stories, so he'll tell you exactly what this prob ...

随机推荐

  1. Android:JAVA使用HDF5存储

    Hierarchical Data Format,可以存储不同类型的图像和数码数据的文件格式,并且可以在不同类型的机器上传输,同时还有统一处理这种文件格式的函数库.大多数普通计算机都支持这种文件格式. ...

  2. 蛮好用的局域网测试工具iperf

    公司局域网总是莫名其妙的和一台机器网速很慢,虽然无法解决也无人解决,但是能有个有效的测试至少也会心里有数. 咱干不了网络硬件布线的活,就测测网速吧. 网上找了下,开始有文章介绍NetIQ Chario ...

  3. 来源页面地址 上一页面url

    Uri uri = Request.UrlReferrer;

  4. 解决vcenter 6.0 vcsa安装插件时报错的问题

    在安装vCenter 6.0 vsca的时候,安装插件到第二个的时候,会报出一个windows installer的错误.需要联系软件管理员或者技术支持的一个error. 经过多次的测试,我终于找到了 ...

  5. 验证:java 主线程在子线程结束后才会结束

    package com.idealisan.test; /** * Hello world! * */ public class App { public static void main( Stri ...

  6. 卸载hyper-v后 仍然提示 vmware 与 hyper-v 不兼容

    已经卸载了hyper-v 仍然提示 vmware 与 hyper-v 不兼容:天天模拟器,提示VT模式没有开启,BIOS里面已经设置过了 环境win10,vm的失败和模拟器的失败都是hyper-v冲突 ...

  7. [luogu2576 SCOI2010] 幸运数字 (容斥原理)

    传送门 Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的"幸运号码"是十进制表示中只包含数字6和8的那些号码,比如68,66 ...

  8. CentOS 7.2.1511编译安装Nginx1.10.1+MySQL5.7.15+PHP7.0.11

    准备篇 一.防火墙配置 CentOS 7.2默认使用的是firewall作为防火墙,这里改为iptables防火墙. 1.关闭firewall: systemctl stop firewalld.se ...

  9. 2018 noip 备战日志

    我是写给自己看的…… Day1 10.8 今天开始停晚修课了,开始认真备战考试了. 今天晚上效率不错,竟然不会累,应该是平时一直这个时间写作业大脑高度集中, 现在换了编程也一样可以集中到这个状态 一些 ...

  10. 痛苦的Windows下的temp目录

    2007不能运行了,错误: [MSBuild Error] “DCC”任务意外失败. System.Configuration.ConfigurationErrorsException: 配置系统未能 ...