一. 整体代码逻辑

yolo中源码分为三个部分,\example,\include,以及\src文件夹下都有源代码存在.

结构如下所示

├── examples
│ ├── darknet.c(主程序)
│ │── xxx1.c
│ └── xxx2.c

├── include
│ ├── darknet.h


├── Makefile


└── src
├── yyy1.c
├── yyy2.h
└──......

\include文件夹中没有.h头文件, 里边的内容算作一个整体, 都是darknet.c中的一部分, 每个文件的内容共darknet.c调用, 除了darknet.c外, \include文件夹中的文件不存在互相调用, 各自完成不同的功能,如检测视频, 检测图片, 检测艺术品等, 通过darknet.c中的if条件进行选择调用. 因为这部分算作一个整体, 所以共用darknet.h这个头文件. 如果\include需要用到\src中的函数, 则在darknet.h中进行声明

在\src文件夹中, 每个c文件都对应一个同名的.h头文件; main函数存在于\example文件夹下的darknet.c文件中.

\include文件夹下的darknet.h的作用是联系\example与\src两部分, 在这两部分中都需要用的函数则在darknet.h中进行声明, 例如\example中有xxx1.c, \src中有yyy1.c及yyy1.h, xxx1.c与yyy1.c中都需要用到func()这个函数, 那么func()的声明需要放在darknet.h中, 然后在xxx1.c与yyy1.h分别引入头文件#include "darknet.h"

而如果\example\darknet.c中需要调用\example\xxx1.c中的函数, 则需要在\example\darknet.c加extern字段

多文件的实现方式(头文件的使用)

在本项目中, \includes\darknet.h是\examples中文件的头文件, 而在\includes\darknet.h中, 又对部分函数(例如 void forward_network(network *net); )进行了声明, 但是 forward_network 函数的定义是在\src\network.c中, 因为定义是在\src中, 所以定义时\src中的文件需要引入darknet.h这个头文件; 由此, \examples中的文件便可通过darknet.h中的声明调用\src中的函数了

举例

对于 ./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg 这条命令,首先传送到darknet.c文件, 然后darknet.c文件检测到含有detect字符, 所以进入if语句. 使用\src\utils.c中的find_char_arg函数来获取输出文件名等信息, 然后调用detector.c文件中的test_detector函数, 该函数负责检测并进行输出.

二. main函数

唉唉唉

三. makefile文件

入门见<并行程序设计(第四版)>

以yolo源码中的makefile文件为例

GPU=
CUDNN=
OPENCV=
OPENMP=
DEBUG= ARCH= -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=[sm_50,compute_50] \
-gencode arch=compute_52,code=[sm_52,compute_52]
# -gencode arch=compute_20,code=[sm_20,sm_21] \ This one is deprecated? # This is what I use, uncomment if you know your arch and want to specify
# ARCH= -gencode arch=compute_52,code=compute_52 VPATH=./src/:./examples
# VTATH用来告诉make,源文件的路径, 参考https://blog.csdn.net/mcgrady_tracy/article/details/27240139
SLIB=libdarknet.so
ALIB=libdarknet.a
EXEC=darknet
OBJDIR=./obj/ CC=gcc
NVCC=nvcc
AR=ar
ARFLAGS=rcs
OPTS=-Ofast
LDFLAGS= -lm -pthread #gcc等编译器会用到的一些优化参数,也可以在里面指定库文件的位置
COMMON= -Iinclude/ -Isrc/
CFLAGS=-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC #指定头文件(.h文件)的路径,如:CFLAGS=-I/usr/include -I/path/include。 ifeq ($(OPENMP), )
CFLAGS+= -fopenmp
endif ifeq ($(DEBUG), )
OPTS=-O0 -g
endif CFLAGS+=$(OPTS) ifeq ($(OPENCV), )
COMMON+= -DOPENCV
CFLAGS+= -DOPENCV
LDFLAGS+= `pkg-config --libs opencv`
COMMON+= `pkg-config --cflags opencv`
endif ifeq ($(GPU), )
COMMON+= -DGPU -I/usr/local/cuda/include/
CFLAGS+= -DGPU
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif ifeq ($(CUDNN), )
COMMON+= -DCUDNN
CFLAGS+= -DCUDNN
LDFLAGS+= -lcudnn
endif OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o upsample_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o logistic_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o lstm_layer.o l2norm_layer.o yolo_layer.o
EXECOBJA=my_test.o captcha.o lsd.o super.o art.o tag.o cifar.o go.o rnn.o segmenter.o regressor.o classifier.o coco.o yolo.o detector.o nightmare.o darknet.o
ifeq ($(GPU), )
LDFLAGS+= -lstdc++
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o avgpool_layer_kernels.o
endif EXECOBJ = $(addprefix $(OBJDIR), $(EXECOBJA)) #加前缀函数: $(addprefix <prefix>,<names...>),OBJDIR是obj存放的地址
OBJS = $(addprefix $(OBJDIR), $(OBJ))
DEPS = $(wildcard src/*.h) Makefile include/darknet.h #all: obj backup results $(SLIB) $(ALIB) $(EXEC)
all: obj results $(SLIB) $(ALIB) $(EXEC) $(EXEC): $(EXECOBJ) $(ALIB)
$(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(ALIB) $(ALIB): $(OBJS)
$(AR) $(ARFLAGS) $@ $^ $(SLIB): $(OBJS)
$(CC) $(CFLAGS) -shared $^ -o $@ $(LDFLAGS) $(OBJDIR)%.o: %.c $(DEPS)
$(CC) $(COMMON) $(CFLAGS) -c $< -o $@ $(OBJDIR)%.o: %.cu $(DEPS)
$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@ obj:
mkdir -p obj
backup:
mkdir -p backup
results:
mkdir -p results .PHONY: clean clean:
rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ) $(OBJDIR)/*

关于vpath,参考https://blog.csdn.net/mcgrady_tracy/article/details/27240139

(1)修改代码的第一次尝试

在\examples文件夹下新建my_test.c文件, 内容如下

#include "darknet.h"

void output_to_file()
{
FILE *fp;
fp=fopen("output.txt","w");
fprintf(fp,"adfsss");
printf("test\n");
fclose(fp);
}

在darknet.c中进行调用, 如下

#include "darknet.h"

#include <time.h>
#include <stdlib.h>
#include <stdio.h>
// extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top); // 在\examples\classifier.c中
extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen); // 在\examples\detector.c中
extern void run_yolo(int argc, char **argv); // 在\examples\yolo.c中
extern void run_detector(int argc, char **argv); // 在\examples\detector.c中
extern void run_coco(int argc, char **argv); // 在\examples\coco.c中
extern void run_captcha(int argc, char **argv); // 在\examples\captcha.c中
extern void run_nightmare(int argc, char **argv); // 在\examples\nightmare.c中
extern void run_classifier(int argc, char **argv); // 在\examples\classifier.c中
extern void run_regressor(int argc, char **argv); // 在\examples\regressor.c中
extern void run_segmenter(int argc, char **argv); // 在\examples\segmenter.c中
extern void run_char_rnn(int argc, char **argv); // 在\examples\rnn.c中
extern void run_tag(int argc, char **argv); // 在\examples\tag.c中
extern void run_cifar(int argc, char **argv); // 在\examples\fun_cifar.c中
extern void run_go(int argc, char **argv); // 在\examples\go.c中
extern void run_art(int argc, char **argv); // 在\examples\art.c中
extern void run_super(int argc, char **argv); // 在\examples\super.c中
extern void run_lsd(int argc, char **argv); // 在\examples\nightmare.c中
extern void output_to_file(); // 在\examples\my_test.c中 void average(int argc, char *argv[])
{
char *cfgfile = argv[];
char *outfile = argv[];
gpu_index = -;
network *net = parse_network_cfg(cfgfile);
network *sum = parse_network_cfg(cfgfile); char *weightfile = argv[];
load_weights(sum, weightfile); int i, j;
int n = argc - ;
for(i = ; i < n; ++i){
weightfile = argv[i+];
load_weights(net, weightfile);
for(j = ; j < net->n; ++j){
layer l = net->layers[j];
layer out = sum->layers[j];
if(l.type == CONVOLUTIONAL){
int num = l.n*l.c*l.size*l.size;
axpy_cpu(l.n, , l.biases, , out.biases, );
axpy_cpu(num, , l.weights, , out.weights, );
if(l.batch_normalize){
axpy_cpu(l.n, , l.scales, , out.scales, );
axpy_cpu(l.n, , l.rolling_mean, , out.rolling_mean, );
axpy_cpu(l.n, , l.rolling_variance, , out.rolling_variance, );
}
}
if(l.type == CONNECTED){
axpy_cpu(l.outputs, , l.biases, , out.biases, );
axpy_cpu(l.outputs*l.inputs, , l.weights, , out.weights, );
}
}
}
n = n+;
for(j = ; j < net->n; ++j){
layer l = sum->layers[j];
if(l.type == CONVOLUTIONAL){
int num = l.n*l.c*l.size*l.size;
scal_cpu(l.n, ./n, l.biases, );
scal_cpu(num, ./n, l.weights, );
if(l.batch_normalize){
scal_cpu(l.n, ./n, l.scales, );
scal_cpu(l.n, ./n, l.rolling_mean, );
scal_cpu(l.n, ./n, l.rolling_variance, );
}
}
if(l.type == CONNECTED){
scal_cpu(l.outputs, ./n, l.biases, );
scal_cpu(l.outputs*l.inputs, ./n, l.weights, );
}
}
save_weights(sum, outfile);
} long numops(network *net)
{
int i;
long ops = ;
for(i = ; i < net->n; ++i){
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL){
ops += 2l * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w;
} else if(l.type == CONNECTED){
ops += 2l * l.inputs * l.outputs;
} else if (l.type == RNN){
ops += 2l * l.input_layer->inputs * l.input_layer->outputs;
ops += 2l * l.self_layer->inputs * l.self_layer->outputs;
ops += 2l * l.output_layer->inputs * l.output_layer->outputs;
} else if (l.type == GRU){
ops += 2l * l.uz->inputs * l.uz->outputs;
ops += 2l * l.uh->inputs * l.uh->outputs;
ops += 2l * l.ur->inputs * l.ur->outputs;
ops += 2l * l.wz->inputs * l.wz->outputs;
ops += 2l * l.wh->inputs * l.wh->outputs;
ops += 2l * l.wr->inputs * l.wr->outputs;
} else if (l.type == LSTM){
ops += 2l * l.uf->inputs * l.uf->outputs;
ops += 2l * l.ui->inputs * l.ui->outputs;
ops += 2l * l.ug->inputs * l.ug->outputs;
ops += 2l * l.uo->inputs * l.uo->outputs;
ops += 2l * l.wf->inputs * l.wf->outputs;
ops += 2l * l.wi->inputs * l.wi->outputs;
ops += 2l * l.wg->inputs * l.wg->outputs;
ops += 2l * l.wo->inputs * l.wo->outputs;
}
}
return ops;
} void speed(char *cfgfile, int tics)
{
if (tics == ) tics = ;
network *net = parse_network_cfg(cfgfile);
set_batch_network(net, );
int i;
double time=what_time_is_it_now();
image im = make_image(net->w, net->h, net->c*net->batch);
for(i = ; i < tics; ++i){
network_predict(net, im.data);
}
double t = what_time_is_it_now() - time;
long ops = numops(net);
printf("\n%d evals, %f Seconds\n", tics, t);
printf("Floating Point Operations: %.2f Bn\n", (float)ops/.);
printf("FLOPS: %.2f Bn\n", (float)ops/.*tics/t);
printf("Speed: %f sec/eval\n", t/tics);
printf("Speed: %f Hz\n", tics/t);
} void operations(char *cfgfile)
{
gpu_index = -;
network *net = parse_network_cfg(cfgfile);
long ops = numops(net);
printf("Floating Point Operations: %ld\n", ops);
printf("Floating Point Operations: %.2f Bn\n", (float)ops/.);
} void oneoff(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network *net = parse_network_cfg(cfgfile);
int oldn = net->layers[net->n - ].n;
int c = net->layers[net->n - ].c;
scal_cpu(oldn*c, ., net->layers[net->n - ].weights, );
scal_cpu(oldn, , net->layers[net->n - ].biases, );
net->layers[net->n - ].n = ;
net->layers[net->n - ].biases += ;
net->layers[net->n - ].weights += *c;
if(weightfile){
load_weights(net, weightfile);
}
net->layers[net->n - ].biases -= ;
net->layers[net->n - ].weights -= *c;
net->layers[net->n - ].n = oldn;
printf("%d\n", oldn);
layer l = net->layers[net->n - ];
copy_cpu(l.n/, l.biases, , l.biases + l.n/, );
copy_cpu(l.n/, l.biases, , l.biases + *l.n/, );
copy_cpu(l.n/*l.c, l.weights, , l.weights + l.n/*l.c, );
copy_cpu(l.n/*l.c, l.weights, , l.weights + *l.n/*l.c, );
*net->seen = ;
save_weights(net, outfile);
} void oneoff2(char *cfgfile, char *weightfile, char *outfile, int l)
{
gpu_index = -;
network *net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights_upto(net, weightfile, , net->n);
load_weights_upto(net, weightfile, l, net->n);
}
*net->seen = ;
save_weights_upto(net, outfile, net->n);
} void partial(char *cfgfile, char *weightfile, char *outfile, int max)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
save_weights_upto(net, outfile, max);
} void print_weights(char *cfgfile, char *weightfile, int n)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
layer l = net->layers[n];
int i, j;
//printf("[");
for(i = ; i < l.n; ++i){
//printf("[");
for(j = ; j < l.size*l.size*l.c; ++j){
//if(j > 0) printf(",");
printf("%g ", l.weights[i*l.size*l.size*l.c + j]);
}
printf("\n");
//printf("]%s\n", (i == l.n-1)?"":",");
}
//printf("]");
} void rescale_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
int i;
for(i = ; i < net->n; ++i){
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL){
rescale_weights(l, , -.);
break;
}
}
save_weights(net, outfile);
} void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
int i;
for(i = ; i < net->n; ++i){
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL){
rgbgr_weights(l);
break;
}
}
save_weights(net, outfile);
} void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
int i;
for (i = ; i < net->n; ++i) {
layer l = net->layers[i];
if (l.type == CONVOLUTIONAL && l.batch_normalize) {
denormalize_convolutional_layer(l);
}
if (l.type == CONNECTED && l.batch_normalize) {
denormalize_connected_layer(l);
}
if (l.type == GRU && l.batch_normalize) {
denormalize_connected_layer(*l.input_z_layer);
denormalize_connected_layer(*l.input_r_layer);
denormalize_connected_layer(*l.input_h_layer);
denormalize_connected_layer(*l.state_z_layer);
denormalize_connected_layer(*l.state_r_layer);
denormalize_connected_layer(*l.state_h_layer);
}
}
save_weights(net, outfile);
} layer normalize_layer(layer l, int n)
{
int j;
l.batch_normalize=;
l.scales = calloc(n, sizeof(float));
for(j = ; j < n; ++j){
l.scales[j] = ;
}
l.rolling_mean = calloc(n, sizeof(float));
l.rolling_variance = calloc(n, sizeof(float));
return l;
} void normalize_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
int i;
for(i = ; i < net->n; ++i){
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL && !l.batch_normalize){
net->layers[i] = normalize_layer(l, l.n);
}
if (l.type == CONNECTED && !l.batch_normalize) {
net->layers[i] = normalize_layer(l, l.outputs);
}
if (l.type == GRU && l.batch_normalize) {
*l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
*l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
*l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
*l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
*l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
*l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
net->layers[i].batch_normalize=;
}
}
save_weights(net, outfile);
} void statistics_net(char *cfgfile, char *weightfile)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
int i;
for (i = ; i < net->n; ++i) {
layer l = net->layers[i];
if (l.type == CONNECTED && l.batch_normalize) {
printf("Connected Layer %d\n", i);
statistics_connected_layer(l);
}
if (l.type == GRU && l.batch_normalize) {
printf("GRU Layer %d\n", i);
printf("Input Z\n");
statistics_connected_layer(*l.input_z_layer);
printf("Input R\n");
statistics_connected_layer(*l.input_r_layer);
printf("Input H\n");
statistics_connected_layer(*l.input_h_layer);
printf("State Z\n");
statistics_connected_layer(*l.state_z_layer);
printf("State R\n");
statistics_connected_layer(*l.state_r_layer);
printf("State H\n");
statistics_connected_layer(*l.state_h_layer);
}
printf("\n");
}
} void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
int i;
for (i = ; i < net->n; ++i) {
layer l = net->layers[i];
if ((l.type == DECONVOLUTIONAL || l.type == CONVOLUTIONAL) && l.batch_normalize) {
denormalize_convolutional_layer(l);
net->layers[i].batch_normalize=;
}
if (l.type == CONNECTED && l.batch_normalize) {
denormalize_connected_layer(l);
net->layers[i].batch_normalize=;
}
if (l.type == GRU && l.batch_normalize) {
denormalize_connected_layer(*l.input_z_layer);
denormalize_connected_layer(*l.input_r_layer);
denormalize_connected_layer(*l.input_h_layer);
denormalize_connected_layer(*l.state_z_layer);
denormalize_connected_layer(*l.state_r_layer);
denormalize_connected_layer(*l.state_h_layer);
l.input_z_layer->batch_normalize = ;
l.input_r_layer->batch_normalize = ;
l.input_h_layer->batch_normalize = ;
l.state_z_layer->batch_normalize = ;
l.state_r_layer->batch_normalize = ;
l.state_h_layer->batch_normalize = ;
net->layers[i].batch_normalize=;
}
}
save_weights(net, outfile);
} void mkimg(char *cfgfile, char *weightfile, int h, int w, int num, char *prefix)
{
network *net = load_network(cfgfile, weightfile, );
image *ims = get_weights(net->layers[]);
int n = net->layers[].n;
int z;
for(z = ; z < num; ++z){
image im = make_image(h, w, );
fill_image(im, .);
int i;
for(i = ; i < ; ++i){
image r = copy_image(ims[rand()%n]);
rotate_image_cw(r, rand()%);
random_distort_image(r, , 1.5, 1.5);
int dx = rand()%(w-r.w);
int dy = rand()%(h-r.h);
ghost_image(r, im, dx, dy);
free_image(r);
}
char buff[];
sprintf(buff, "%s/gen_%d", prefix, z);
save_image(im, buff);
free_image(im);
}
} void visualize(char *cfgfile, char *weightfile)
{
network *net = load_network(cfgfile, weightfile, );
visualize_network(net);
#ifdef OPENCV
cvWaitKey();
#endif
} int main(int argc, char **argv)
{
// argv[0] 指向程序运行的全路径名;argv[1] 指向在DOS命令行中执行程序名后的第一个字符串;argv[2]第二个
//test_resize("data/bad.jpg");
//test_box();
//test_convolutional_layer();
if(argc < ){
fprintf(stderr, "usage: %s <function>\n", argv[]);
return ;
}
gpu_index = find_int_arg(argc, argv, "-i", );
if(find_arg(argc, argv, "-nogpu")) {
gpu_index = -;
} #ifndef GPU
gpu_index = -;
#else
if(gpu_index >= ){
cuda_set_device(gpu_index);
}
#endif if ( == strcmp(argv[], "average")){
average(argc, argv);
} else if ( == strcmp(argv[], "yolo")){
run_yolo(argc, argv);
} else if ( == strcmp(argv[], "super")){
run_super(argc, argv);
} else if ( == strcmp(argv[], "lsd")){
run_lsd(argc, argv);
} else if ( == strcmp(argv[], "detector")){
run_detector(argc, argv);
} else if ( == strcmp(argv[], "detect")){
float thresh = find_float_arg(argc, argv, "-thresh", .); //thresh用来控制检测的阈值
char *filename = (argc > ) ? argv[]: ;
char *outfile = find_char_arg(argc, argv, "-out", ); // 定义在\src\utils.c中
int fullscreen = find_arg(argc, argv, "-fullscreen");
test_detector("cfg/coco.data", argv[], argv[], filename, thresh, ., outfile, fullscreen); // 函数定义位于detector.c中
// 命令举例./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg //*修改//
output_to_file();
//*// } else if ( == strcmp(argv[], "cifar")){
run_cifar(argc, argv);
} else if ( == strcmp(argv[], "go")){
run_go(argc, argv);
} else if ( == strcmp(argv[], "rnn")){
run_char_rnn(argc, argv);
} else if ( == strcmp(argv[], "coco")){
run_coco(argc, argv);
} else if ( == strcmp(argv[], "classify")){
predict_classifier("cfg/imagenet1k.data", argv[], argv[], argv[], );
} else if ( == strcmp(argv[], "classifier")){
run_classifier(argc, argv);
} else if ( == strcmp(argv[], "regressor")){
run_regressor(argc, argv);
} else if ( == strcmp(argv[], "segmenter")){
run_segmenter(argc, argv);
} else if ( == strcmp(argv[], "art")){
run_art(argc, argv);
} else if ( == strcmp(argv[], "tag")){
run_tag(argc, argv);
} else if ( == strcmp(argv[], "3d")){
composite_3d(argv[], argv[], argv[], (argc > ) ? atof(argv[]) : );
} else if ( == strcmp(argv[], "test")){
test_resize(argv[]);
} else if ( == strcmp(argv[], "captcha")){
run_captcha(argc, argv);
} else if ( == strcmp(argv[], "nightmare")){
run_nightmare(argc, argv);
} else if ( == strcmp(argv[], "rgbgr")){
rgbgr_net(argv[], argv[], argv[]);
} else if ( == strcmp(argv[], "reset")){
reset_normalize_net(argv[], argv[], argv[]);
} else if ( == strcmp(argv[], "denormalize")){
denormalize_net(argv[], argv[], argv[]);
} else if ( == strcmp(argv[], "statistics")){
statistics_net(argv[], argv[]);
} else if ( == strcmp(argv[], "normalize")){
normalize_net(argv[], argv[], argv[]);
} else if ( == strcmp(argv[], "rescale")){
rescale_net(argv[], argv[], argv[]);
} else if ( == strcmp(argv[], "ops")){
operations(argv[]);
} else if ( == strcmp(argv[], "speed")){
speed(argv[], (argc > && argv[]) ? atoi(argv[]) : );
} else if ( == strcmp(argv[], "oneoff")){
oneoff(argv[], argv[], argv[]);
} else if ( == strcmp(argv[], "oneoff2")){
oneoff2(argv[], argv[], argv[], atoi(argv[]));
} else if ( == strcmp(argv[], "print")){
print_weights(argv[], argv[], atoi(argv[]));
} else if ( == strcmp(argv[], "partial")){
partial(argv[], argv[], argv[], atoi(argv[]));
} else if ( == strcmp(argv[], "average")){
average(argc, argv);
} else if ( == strcmp(argv[], "visualize")){
visualize(argv[], (argc > ) ? argv[] : );
} else if ( == strcmp(argv[], "mkimg")){
mkimg(argv[], argv[], atoi(argv[]), atoi(argv[]), atoi(argv[]), argv[]);
} else if ( == strcmp(argv[], "imtest")){
test_resize(argv[]);
} else {
fprintf(stderr, "Not an option: %s\n", argv[]);
}
return ;
}

然后修改Makefile文件, 在EXECOBJA=后追加my_test.o字段. 注意不可将该字段放在EXECOBJA=的最后, 否则编译不通过. 内容如下

GPU=
CUDNN=
OPENCV=
OPENMP=
DEBUG= ARCH= -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=[sm_50,compute_50] \
-gencode arch=compute_52,code=[sm_52,compute_52]
# -gencode arch=compute_20,code=[sm_20,sm_21] \ This one is deprecated? # This is what I use, uncomment if you know your arch and want to specify
# ARCH= -gencode arch=compute_52,code=compute_52 VPATH=./src/:./examples
# VTATH用来告诉make,源文件的路径, 参考https://blog.csdn.net/mcgrady_tracy/article/details/27240139
SLIB=libdarknet.so
ALIB=libdarknet.a
EXEC=darknet
OBJDIR=./obj/ CC=gcc
NVCC=nvcc
AR=ar
ARFLAGS=rcs
OPTS=-Ofast
LDFLAGS= -lm -pthread #gcc等编译器会用到的一些优化参数,也可以在里面指定库文件的位置
COMMON= -Iinclude/ -Isrc/
CFLAGS=-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC #指定头文件(.h文件)的路径,如:CFLAGS=-I/usr/include -I/path/include。 ifeq ($(OPENMP), )
CFLAGS+= -fopenmp
endif ifeq ($(DEBUG), )
OPTS=-O0 -g
endif CFLAGS+=$(OPTS) ifeq ($(OPENCV), )
COMMON+= -DOPENCV
CFLAGS+= -DOPENCV
LDFLAGS+= `pkg-config --libs opencv`
COMMON+= `pkg-config --cflags opencv`
endif ifeq ($(GPU), )
COMMON+= -DGPU -I/usr/local/cuda/include/
CFLAGS+= -DGPU
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif ifeq ($(CUDNN), )
COMMON+= -DCUDNN
CFLAGS+= -DCUDNN
LDFLAGS+= -lcudnn
endif OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o upsample_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o logistic_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o lstm_layer.o l2norm_layer.o yolo_layer.o
EXECOBJA=my_test.o captcha.o lsd.o super.o art.o tag.o cifar.o go.o rnn.o segmenter.o regressor.o classifier.o coco.o yolo.o detector.o nightmare.o darknet.o
ifeq ($(GPU), )
LDFLAGS+= -lstdc++
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o avgpool_layer_kernels.o
endif EXECOBJ = $(addprefix $(OBJDIR), $(EXECOBJA)) #加前缀函数: $(addprefix <prefix>,<names...>),OBJDIR是obj存放的地址
OBJS = $(addprefix $(OBJDIR), $(OBJ))
DEPS = $(wildcard src/*.h) Makefile include/darknet.h #all: obj backup results $(SLIB) $(ALIB) $(EXEC)
all: obj results $(SLIB) $(ALIB) $(EXEC) $(EXEC): $(EXECOBJ) $(ALIB)
$(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(ALIB) $(ALIB): $(OBJS)
$(AR) $(ARFLAGS) $@ $^ $(SLIB): $(OBJS)
$(CC) $(CFLAGS) -shared $^ -o $@ $(LDFLAGS) $(OBJDIR)%.o: %.c $(DEPS)
$(CC) $(COMMON) $(CFLAGS) -c $< -o $@ $(OBJDIR)%.o: %.cu $(DEPS)
$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@ obj:
mkdir -p obj
backup:
mkdir -p backup
results:
mkdir -p results .PHONY: clean clean:
rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ) $(OBJDIR)/*

编译并可成功运行.

 (2)修改代码的第二次尝试

在\src目录下新建my_testinsrc.c以及my_testinsrc.h, 内容如下

// my_testinsrc.h
#include "darknet.h" // my_testinsrc.c
#include <stdio.h>
void my_testinsrc(){
printf("test in src\n");
}

修改Makefile, 在最后声明新加的函数

修改后内容如下

GPU=
CUDNN=
OPENCV=
OPENMP=
DEBUG= ARCH= -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=[sm_50,compute_50] \
-gencode arch=compute_52,code=[sm_52,compute_52]
# -gencode arch=compute_20,code=[sm_20,sm_21] \ This one is deprecated? # This is what I use, uncomment if you know your arch and want to specify
# ARCH= -gencode arch=compute_52,code=compute_52 VPATH=./src/:./examples
# VTATH用来告诉make,源文件的路径, 参考https://blog.csdn.net/mcgrady_tracy/article/details/27240139
SLIB=libdarknet.so
ALIB=libdarknet.a
EXEC=darknet
OBJDIR=./obj/ CC=gcc
NVCC=nvcc
AR=ar
ARFLAGS=rcs
OPTS=-Ofast
LDFLAGS= -lm -pthread #gcc等编译器会用到的一些优化参数,也可以在里面指定库文件的位置
COMMON= -Iinclude/ -Isrc/
CFLAGS=-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC #指定头文件(.h文件)的路径,如:CFLAGS=-I/usr/include -I/path/include。 ifeq ($(OPENMP), )
CFLAGS+= -fopenmp
endif ifeq ($(DEBUG), )
OPTS=-O0 -g
endif CFLAGS+=$(OPTS) ifeq ($(OPENCV), )
COMMON+= -DOPENCV
CFLAGS+= -DOPENCV
LDFLAGS+= `pkg-config --libs opencv`
COMMON+= `pkg-config --cflags opencv`
endif ifeq ($(GPU), )
COMMON+= -DGPU -I/usr/local/cuda/include/
CFLAGS+= -DGPU
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif ifeq ($(CUDNN), )
COMMON+= -DCUDNN
CFLAGS+= -DCUDNN
LDFLAGS+= -lcudnn
endif OBJ=my_testinsrc.o gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o upsample_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o logistic_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o lstm_layer.o l2norm_layer.o yolo_layer.o
EXECOBJA=my_test.o captcha.o lsd.o super.o art.o tag.o cifar.o go.o rnn.o segmenter.o regressor.o classifier.o coco.o yolo.o detector.o nightmare.o darknet.o
ifeq ($(GPU), )
LDFLAGS+= -lstdc++
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o avgpool_layer_kernels.o
endif EXECOBJ = $(addprefix $(OBJDIR), $(EXECOBJA)) #加前缀函数: $(addprefix <prefix>,<names...>),OBJDIR是obj存放的地址
OBJS = $(addprefix $(OBJDIR), $(OBJ))
DEPS = $(wildcard src/*.h) Makefile include/darknet.h #all: obj backup results $(SLIB) $(ALIB) $(EXEC)
all: obj results $(SLIB) $(ALIB) $(EXEC) $(EXEC): $(EXECOBJ) $(ALIB)
$(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(ALIB) $(ALIB): $(OBJS)
$(AR) $(ARFLAGS) $@ $^ $(SLIB): $(OBJS)
$(CC) $(CFLAGS) -shared $^ -o $@ $(LDFLAGS) $(OBJDIR)%.o: %.c $(DEPS)
$(CC) $(COMMON) $(CFLAGS) -c $< -o $@ $(OBJDIR)%.o: %.cu $(DEPS)
$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@ obj:
mkdir -p obj
backup:
mkdir -p backup
results:
mkdir -p results .PHONY: clean clean:
rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ) $(OBJDIR)/*

在darknet.c中进行调用, 内容如下

#include "darknet.h"

#include <time.h>
#include <stdlib.h>
#include <stdio.h>
// extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top); // 在\examples\classifier.c中
extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen); // 在\examples\detector.c中
extern void run_yolo(int argc, char **argv); // 在\examples\yolo.c中
extern void run_detector(int argc, char **argv); // 在\examples\detector.c中
extern void run_coco(int argc, char **argv); // 在\examples\coco.c中
extern void run_captcha(int argc, char **argv); // 在\examples\captcha.c中
extern void run_nightmare(int argc, char **argv); // 在\examples\nightmare.c中
extern void run_classifier(int argc, char **argv); // 在\examples\classifier.c中
extern void run_regressor(int argc, char **argv); // 在\examples\regressor.c中
extern void run_segmenter(int argc, char **argv); // 在\examples\segmenter.c中
extern void run_char_rnn(int argc, char **argv); // 在\examples\rnn.c中
extern void run_tag(int argc, char **argv); // 在\examples\tag.c中
extern void run_cifar(int argc, char **argv); // 在\examples\fun_cifar.c中
extern void run_go(int argc, char **argv); // 在\examples\go.c中
extern void run_art(int argc, char **argv); // 在\examples\art.c中
extern void run_super(int argc, char **argv); // 在\examples\super.c中
extern void run_lsd(int argc, char **argv); // 在\examples\nightmare.c中
extern void output_to_file(); // 在\examples\my_test.c中 void average(int argc, char *argv[])
{
char *cfgfile = argv[];
char *outfile = argv[];
gpu_index = -;
network *net = parse_network_cfg(cfgfile);
network *sum = parse_network_cfg(cfgfile); char *weightfile = argv[];
load_weights(sum, weightfile); int i, j;
int n = argc - ;
for(i = ; i < n; ++i){
weightfile = argv[i+];
load_weights(net, weightfile);
for(j = ; j < net->n; ++j){
layer l = net->layers[j];
layer out = sum->layers[j];
if(l.type == CONVOLUTIONAL){
int num = l.n*l.c*l.size*l.size;
axpy_cpu(l.n, , l.biases, , out.biases, );
axpy_cpu(num, , l.weights, , out.weights, );
if(l.batch_normalize){
axpy_cpu(l.n, , l.scales, , out.scales, );
axpy_cpu(l.n, , l.rolling_mean, , out.rolling_mean, );
axpy_cpu(l.n, , l.rolling_variance, , out.rolling_variance, );
}
}
if(l.type == CONNECTED){
axpy_cpu(l.outputs, , l.biases, , out.biases, );
axpy_cpu(l.outputs*l.inputs, , l.weights, , out.weights, );
}
}
}
n = n+;
for(j = ; j < net->n; ++j){
layer l = sum->layers[j];
if(l.type == CONVOLUTIONAL){
int num = l.n*l.c*l.size*l.size;
scal_cpu(l.n, ./n, l.biases, );
scal_cpu(num, ./n, l.weights, );
if(l.batch_normalize){
scal_cpu(l.n, ./n, l.scales, );
scal_cpu(l.n, ./n, l.rolling_mean, );
scal_cpu(l.n, ./n, l.rolling_variance, );
}
}
if(l.type == CONNECTED){
scal_cpu(l.outputs, ./n, l.biases, );
scal_cpu(l.outputs*l.inputs, ./n, l.weights, );
}
}
save_weights(sum, outfile);
} long numops(network *net)
{
int i;
long ops = ;
for(i = ; i < net->n; ++i){
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL){
ops += 2l * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w;
} else if(l.type == CONNECTED){
ops += 2l * l.inputs * l.outputs;
} else if (l.type == RNN){
ops += 2l * l.input_layer->inputs * l.input_layer->outputs;
ops += 2l * l.self_layer->inputs * l.self_layer->outputs;
ops += 2l * l.output_layer->inputs * l.output_layer->outputs;
} else if (l.type == GRU){
ops += 2l * l.uz->inputs * l.uz->outputs;
ops += 2l * l.uh->inputs * l.uh->outputs;
ops += 2l * l.ur->inputs * l.ur->outputs;
ops += 2l * l.wz->inputs * l.wz->outputs;
ops += 2l * l.wh->inputs * l.wh->outputs;
ops += 2l * l.wr->inputs * l.wr->outputs;
} else if (l.type == LSTM){
ops += 2l * l.uf->inputs * l.uf->outputs;
ops += 2l * l.ui->inputs * l.ui->outputs;
ops += 2l * l.ug->inputs * l.ug->outputs;
ops += 2l * l.uo->inputs * l.uo->outputs;
ops += 2l * l.wf->inputs * l.wf->outputs;
ops += 2l * l.wi->inputs * l.wi->outputs;
ops += 2l * l.wg->inputs * l.wg->outputs;
ops += 2l * l.wo->inputs * l.wo->outputs;
}
}
return ops;
} void speed(char *cfgfile, int tics)
{
if (tics == ) tics = ;
network *net = parse_network_cfg(cfgfile);
set_batch_network(net, );
int i;
double time=what_time_is_it_now();
image im = make_image(net->w, net->h, net->c*net->batch);
for(i = ; i < tics; ++i){
network_predict(net, im.data);
}
double t = what_time_is_it_now() - time;
long ops = numops(net);
printf("\n%d evals, %f Seconds\n", tics, t);
printf("Floating Point Operations: %.2f Bn\n", (float)ops/.);
printf("FLOPS: %.2f Bn\n", (float)ops/.*tics/t);
printf("Speed: %f sec/eval\n", t/tics);
printf("Speed: %f Hz\n", tics/t);
} void operations(char *cfgfile)
{
gpu_index = -;
network *net = parse_network_cfg(cfgfile);
long ops = numops(net);
printf("Floating Point Operations: %ld\n", ops);
printf("Floating Point Operations: %.2f Bn\n", (float)ops/.);
} void oneoff(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network *net = parse_network_cfg(cfgfile);
int oldn = net->layers[net->n - ].n;
int c = net->layers[net->n - ].c;
scal_cpu(oldn*c, ., net->layers[net->n - ].weights, );
scal_cpu(oldn, , net->layers[net->n - ].biases, );
net->layers[net->n - ].n = ;
net->layers[net->n - ].biases += ;
net->layers[net->n - ].weights += *c;
if(weightfile){
load_weights(net, weightfile);
}
net->layers[net->n - ].biases -= ;
net->layers[net->n - ].weights -= *c;
net->layers[net->n - ].n = oldn;
printf("%d\n", oldn);
layer l = net->layers[net->n - ];
copy_cpu(l.n/, l.biases, , l.biases + l.n/, );
copy_cpu(l.n/, l.biases, , l.biases + *l.n/, );
copy_cpu(l.n/*l.c, l.weights, , l.weights + l.n/*l.c, );
copy_cpu(l.n/*l.c, l.weights, , l.weights + *l.n/*l.c, );
*net->seen = ;
save_weights(net, outfile);
} void oneoff2(char *cfgfile, char *weightfile, char *outfile, int l)
{
gpu_index = -;
network *net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights_upto(net, weightfile, , net->n);
load_weights_upto(net, weightfile, l, net->n);
}
*net->seen = ;
save_weights_upto(net, outfile, net->n);
} void partial(char *cfgfile, char *weightfile, char *outfile, int max)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
save_weights_upto(net, outfile, max);
} void print_weights(char *cfgfile, char *weightfile, int n)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
layer l = net->layers[n];
int i, j;
//printf("[");
for(i = ; i < l.n; ++i){
//printf("[");
for(j = ; j < l.size*l.size*l.c; ++j){
//if(j > 0) printf(",");
printf("%g ", l.weights[i*l.size*l.size*l.c + j]);
}
printf("\n");
//printf("]%s\n", (i == l.n-1)?"":",");
}
//printf("]");
} void rescale_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
int i;
for(i = ; i < net->n; ++i){
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL){
rescale_weights(l, , -.);
break;
}
}
save_weights(net, outfile);
} void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
int i;
for(i = ; i < net->n; ++i){
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL){
rgbgr_weights(l);
break;
}
}
save_weights(net, outfile);
} void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
int i;
for (i = ; i < net->n; ++i) {
layer l = net->layers[i];
if (l.type == CONVOLUTIONAL && l.batch_normalize) {
denormalize_convolutional_layer(l);
}
if (l.type == CONNECTED && l.batch_normalize) {
denormalize_connected_layer(l);
}
if (l.type == GRU && l.batch_normalize) {
denormalize_connected_layer(*l.input_z_layer);
denormalize_connected_layer(*l.input_r_layer);
denormalize_connected_layer(*l.input_h_layer);
denormalize_connected_layer(*l.state_z_layer);
denormalize_connected_layer(*l.state_r_layer);
denormalize_connected_layer(*l.state_h_layer);
}
}
save_weights(net, outfile);
} layer normalize_layer(layer l, int n)
{
int j;
l.batch_normalize=;
l.scales = calloc(n, sizeof(float));
for(j = ; j < n; ++j){
l.scales[j] = ;
}
l.rolling_mean = calloc(n, sizeof(float));
l.rolling_variance = calloc(n, sizeof(float));
return l;
} void normalize_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
int i;
for(i = ; i < net->n; ++i){
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL && !l.batch_normalize){
net->layers[i] = normalize_layer(l, l.n);
}
if (l.type == CONNECTED && !l.batch_normalize) {
net->layers[i] = normalize_layer(l, l.outputs);
}
if (l.type == GRU && l.batch_normalize) {
*l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
*l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
*l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
*l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
*l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
*l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
net->layers[i].batch_normalize=;
}
}
save_weights(net, outfile);
} void statistics_net(char *cfgfile, char *weightfile)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
int i;
for (i = ; i < net->n; ++i) {
layer l = net->layers[i];
if (l.type == CONNECTED && l.batch_normalize) {
printf("Connected Layer %d\n", i);
statistics_connected_layer(l);
}
if (l.type == GRU && l.batch_normalize) {
printf("GRU Layer %d\n", i);
printf("Input Z\n");
statistics_connected_layer(*l.input_z_layer);
printf("Input R\n");
statistics_connected_layer(*l.input_r_layer);
printf("Input H\n");
statistics_connected_layer(*l.input_h_layer);
printf("State Z\n");
statistics_connected_layer(*l.state_z_layer);
printf("State R\n");
statistics_connected_layer(*l.state_r_layer);
printf("State H\n");
statistics_connected_layer(*l.state_h_layer);
}
printf("\n");
}
} void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network *net = load_network(cfgfile, weightfile, );
int i;
for (i = ; i < net->n; ++i) {
layer l = net->layers[i];
if ((l.type == DECONVOLUTIONAL || l.type == CONVOLUTIONAL) && l.batch_normalize) {
denormalize_convolutional_layer(l);
net->layers[i].batch_normalize=;
}
if (l.type == CONNECTED && l.batch_normalize) {
denormalize_connected_layer(l);
net->layers[i].batch_normalize=;
}
if (l.type == GRU && l.batch_normalize) {
denormalize_connected_layer(*l.input_z_layer);
denormalize_connected_layer(*l.input_r_layer);
denormalize_connected_layer(*l.input_h_layer);
denormalize_connected_layer(*l.state_z_layer);
denormalize_connected_layer(*l.state_r_layer);
denormalize_connected_layer(*l.state_h_layer);
l.input_z_layer->batch_normalize = ;
l.input_r_layer->batch_normalize = ;
l.input_h_layer->batch_normalize = ;
l.state_z_layer->batch_normalize = ;
l.state_r_layer->batch_normalize = ;
l.state_h_layer->batch_normalize = ;
net->layers[i].batch_normalize=;
}
}
save_weights(net, outfile);
} void mkimg(char *cfgfile, char *weightfile, int h, int w, int num, char *prefix)
{
network *net = load_network(cfgfile, weightfile, );
image *ims = get_weights(net->layers[]);
int n = net->layers[].n;
int z;
for(z = ; z < num; ++z){
image im = make_image(h, w, );
fill_image(im, .);
int i;
for(i = ; i < ; ++i){
image r = copy_image(ims[rand()%n]);
rotate_image_cw(r, rand()%);
random_distort_image(r, , 1.5, 1.5);
int dx = rand()%(w-r.w);
int dy = rand()%(h-r.h);
ghost_image(r, im, dx, dy);
free_image(r);
}
char buff[];
sprintf(buff, "%s/gen_%d", prefix, z);
save_image(im, buff);
free_image(im);
}
} void visualize(char *cfgfile, char *weightfile)
{
network *net = load_network(cfgfile, weightfile, );
visualize_network(net);
#ifdef OPENCV
cvWaitKey();
#endif
} int main(int argc, char **argv)
{
// argv[0] 指向程序运行的全路径名;argv[1] 指向在DOS命令行中执行程序名后的第一个字符串;argv[2]第二个
//test_resize("data/bad.jpg");
//test_box();
//test_convolutional_layer();
if(argc < ){
fprintf(stderr, "usage: %s <function>\n", argv[]);
return ;
}
gpu_index = find_int_arg(argc, argv, "-i", );
if(find_arg(argc, argv, "-nogpu")) {
gpu_index = -;
} #ifndef GPU
gpu_index = -;
#else
if(gpu_index >= ){
cuda_set_device(gpu_index);
}
#endif if ( == strcmp(argv[], "average")){
average(argc, argv);
} else if ( == strcmp(argv[], "yolo")){
run_yolo(argc, argv);
} else if ( == strcmp(argv[], "super")){
run_super(argc, argv);
} else if ( == strcmp(argv[], "lsd")){
run_lsd(argc, argv);
} else if ( == strcmp(argv[], "detector")){
run_detector(argc, argv);
} else if ( == strcmp(argv[], "detect")){
float thresh = find_float_arg(argc, argv, "-thresh", .); //thresh用来控制检测的阈值
char *filename = (argc > ) ? argv[]: ;
char *outfile = find_char_arg(argc, argv, "-out", ); // 定义在\src\utils.c中
int fullscreen = find_arg(argc, argv, "-fullscreen");
test_detector("cfg/coco.data", argv[], argv[], filename, thresh, ., outfile, fullscreen); // 函数定义位于detector.c中
// 命令举例./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg //*修改//
//output_to_file();
my_testinsrc();
//*// } else if ( == strcmp(argv[], "cifar")){
run_cifar(argc, argv);
} else if ( == strcmp(argv[], "go")){
run_go(argc, argv);
} else if ( == strcmp(argv[], "rnn")){
run_char_rnn(argc, argv);
} else if ( == strcmp(argv[], "coco")){
run_coco(argc, argv);
} else if ( == strcmp(argv[], "classify")){
predict_classifier("cfg/imagenet1k.data", argv[], argv[], argv[], );
} else if ( == strcmp(argv[], "classifier")){
run_classifier(argc, argv);
} else if ( == strcmp(argv[], "regressor")){
run_regressor(argc, argv);
} else if ( == strcmp(argv[], "segmenter")){
run_segmenter(argc, argv);
} else if ( == strcmp(argv[], "art")){
run_art(argc, argv);
} else if ( == strcmp(argv[], "tag")){
run_tag(argc, argv);
} else if ( == strcmp(argv[], "3d")){
composite_3d(argv[], argv[], argv[], (argc > ) ? atof(argv[]) : );
} else if ( == strcmp(argv[], "test")){
test_resize(argv[]);
} else if ( == strcmp(argv[], "captcha")){
run_captcha(argc, argv);
} else if ( == strcmp(argv[], "nightmare")){
run_nightmare(argc, argv);
} else if ( == strcmp(argv[], "rgbgr")){
rgbgr_net(argv[], argv[], argv[]);
} else if ( == strcmp(argv[], "reset")){
reset_normalize_net(argv[], argv[], argv[]);
} else if ( == strcmp(argv[], "denormalize")){
denormalize_net(argv[], argv[], argv[]);
} else if ( == strcmp(argv[], "statistics")){
statistics_net(argv[], argv[]);
} else if ( == strcmp(argv[], "normalize")){
normalize_net(argv[], argv[], argv[]);
} else if ( == strcmp(argv[], "rescale")){
rescale_net(argv[], argv[], argv[]);
} else if ( == strcmp(argv[], "ops")){
operations(argv[]);
} else if ( == strcmp(argv[], "speed")){
speed(argv[], (argc > && argv[]) ? atoi(argv[]) : );
} else if ( == strcmp(argv[], "oneoff")){
oneoff(argv[], argv[], argv[]);
} else if ( == strcmp(argv[], "oneoff2")){
oneoff2(argv[], argv[], argv[], atoi(argv[]));
} else if ( == strcmp(argv[], "print")){
print_weights(argv[], argv[], atoi(argv[]));
} else if ( == strcmp(argv[], "partial")){
partial(argv[], argv[], argv[], atoi(argv[]));
} else if ( == strcmp(argv[], "average")){
average(argc, argv);
} else if ( == strcmp(argv[], "visualize")){
visualize(argv[], (argc > ) ? argv[] : );
} else if ( == strcmp(argv[], "mkimg")){
mkimg(argv[], argv[], atoi(argv[]), atoi(argv[]), atoi(argv[]), argv[]);
} else if ( == strcmp(argv[], "imtest")){
test_resize(argv[]);
} else {
fprintf(stderr, "Not an option: %s\n", argv[]);
}
return ;
}

可成功编译并运行

(3)修改代码的第三次尝试

在darknet下新建目录\my, 用于存放自己新写的代码. 新建两个文件my_tofile.c与my_file.h, 其内容如下

//my_tofile.h

#ifndef TOFILE
#define TOFLIE
#include "darknet.h" void my_output_to_file(); #endif // my_tofile.c
#include "my_tofile.h" void my_output_to_file()
{
FILE *fp;
fp=fopen("output.txt","w");
fprintf(fp,"adfsss");
fclose(fp);
printf("test in \\my\n");
}

修改Makefile文件, 在最后对函数进行声明, 在VPATH处添加路径 VPATH=./src/:./examples:./my , 修改完后内容如下

GPU=
CUDNN=
OPENCV=
OPENMP=
DEBUG= ARCH= -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=[sm_50,compute_50] \
-gencode arch=compute_52,code=[sm_52,compute_52]
# -gencode arch=compute_20,code=[sm_20,sm_21] \ This one is deprecated? # This is what I use, uncomment if you know your arch and want to specify
# ARCH= -gencode arch=compute_52,code=compute_52 VPATH=./src/:./examples:./my
# VTATH用来告诉make,源文件的路径, 参考https://blog.csdn.net/mcgrady_tracy/article/details/27240139
SLIB=libdarknet.so
ALIB=libdarknet.a
EXEC=darknet
OBJDIR=./obj/ CC=gcc
NVCC=nvcc
AR=ar
ARFLAGS=rcs
OPTS=-Ofast
LDFLAGS= -lm -pthread #gcc等编译器会用到的一些优化参数,也可以在里面指定库文件的位置
COMMON= -Iinclude/ -Isrc/
CFLAGS=-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC #指定头文件(.h文件)的路径,如:CFLAGS=-I/usr/include -I/path/include。 ifeq ($(OPENMP), )
CFLAGS+= -fopenmp
endif ifeq ($(DEBUG), )
OPTS=-O0 -g
endif CFLAGS+=$(OPTS) ifeq ($(OPENCV), )
COMMON+= -DOPENCV
CFLAGS+= -DOPENCV
LDFLAGS+= `pkg-config --libs opencv`
COMMON+= `pkg-config --cflags opencv`
endif ifeq ($(GPU), )
COMMON+= -DGPU -I/usr/local/cuda/include/
CFLAGS+= -DGPU
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif ifeq ($(CUDNN), )
COMMON+= -DCUDNN
CFLAGS+= -DCUDNN
LDFLAGS+= -lcudnn
endif OBJ=my_tofile.o my_testinsrc.o gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o upsample_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o logistic_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o lstm_layer.o l2norm_layer.o yolo_layer.o
EXECOBJA=my_test.o captcha.o lsd.o super.o art.o tag.o cifar.o go.o rnn.o segmenter.o regressor.o classifier.o coco.o yolo.o detector.o nightmare.o darknet.o
ifeq ($(GPU), )
LDFLAGS+= -lstdc++
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o avgpool_layer_kernels.o
endif EXECOBJ = $(addprefix $(OBJDIR), $(EXECOBJA)) #加前缀函数: $(addprefix <prefix>,<names...>),OBJDIR是obj存放的地址
OBJS = $(addprefix $(OBJDIR), $(OBJ))
DEPS = $(wildcard src/*.h) Makefile include/darknet.h #all: obj backup results $(SLIB) $(ALIB) $(EXEC)
all: obj results $(SLIB) $(ALIB) $(EXEC) $(EXEC): $(EXECOBJ) $(ALIB)
$(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(ALIB) $(ALIB): $(OBJS)
$(AR) $(ARFLAGS) $@ $^ $(SLIB): $(OBJS)
$(CC) $(CFLAGS) -shared $^ -o $@ $(LDFLAGS) $(OBJDIR)%.o: %.c $(DEPS)
$(CC) $(COMMON) $(CFLAGS) -c $< -o $@ $(OBJDIR)%.o: %.cu $(DEPS)
$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@ obj:
mkdir -p obj
backup:
mkdir -p backup
results:
mkdir -p results .PHONY: clean clean:
rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ) $(OBJDIR)/*

最后在\exampes中的文件中进行调用, 可顺利编译并运行

├── examples
│ ├── darknet.c(主程序)
│ │── xxx1.c
│ └── xxx2.c

├── include
│ ├── darknet.h


├── Makefile

├── my
│ ├── my_zzz1.c
│ │── my_zzz1.h
│ └── ......

└── src
├── yyy1.c
├── yyy2.h
└──......

最终代码结构会如下所示

yolo源码解析(1):代码逻辑的更多相关文章

  1. 第三十六节,目标检测之yolo源码解析

    在一个月前,我就已经介绍了yolo目标检测的原理,后来也把tensorflow实现代码仔细看了一遍.但是由于这个暑假事情比较大,就一直搁浅了下来,趁今天有时间,就把源码解析一下.关于yolo目标检测的 ...

  2. yolo源码解析(3):视频检测流程

    代码在自己电脑中!!!!不在服务器 根据前文所说yolo代码逻辑: ├── examples │ ├── darknet.c(主程序) │ │── xxx1.c │ └── xxx2.c │ ├── ...

  3. yolo源码解析(一)

    原文:https://www.cnblogs.com/zyly/p/9534063.html yolo源码来源于网址:https://github.com/hizhangp/yolo_tensorfl ...

  4. jquery源码解析:代码结构分析

    本系列是针对jquery2.0.3版本进行的讲解.此版本不支持IE8及以下版本. (function(){ (21, 94)     定义了一些变量和函数,   jQuery = function() ...

  5. axios 源码解析(中) 代码结构

    axios现在最新的版本的是v0.19.0,本节我们来分析一下它的实现源码,首先通过 gitHub地址获取到它的源代码,地址:https://github.com/axios/axios/tree/v ...

  6. yolo源码解析(三)

    七 测试网络 模型测试包含于test.py文件,Detector类的image_detector()函数用于检测目标. import os import cv2 import argparse imp ...

  7. yolo源码解析(二)

    五 读取数据pascal_voc.py文件解析 我们在YOLENet类中定义了两个占位符,一个是输入图片占位符,一个是图片对应的标签占位符,如下: #输入图片占位符 [NONE,image_size, ...

  8. yolo源码解析(3):进行简单跳帧

    视频检测命令  ./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights ../../dataset/ ...

  9. yolo源码解析(2):处理图片

    首先安装ffmpeg, 参考https://blog.csdn.net/lwgkzl/article/details/77836207 然后将视频切分为图片, 参考:https://zhuanlan. ...

随机推荐

  1. HDU 1015.Safecracker【暴力枚举】【8月17】

    Safecracker Problem Description === Op tech briefing, 2002/11/02 06:42 CST ===  "The item is lo ...

  2. Python学习历程之模块浅识

    # =============================操作系统模块=======================# import os# 待续# ======================= ...

  3. 32.QT绘图

    widget.h #ifndef WIDGET_H #define WIDGET_H #include <QWidget> #include <QPainter> #inclu ...

  4. python初始面向对象

    阅读目录 楔子 面向过程vs面向对象 初识面向对象 类的相关知识 对象的相关知识 对象之间的交互 类命名空间与对象.实例的命名空间 类的组合用法 初识面向对象小结 面向对象的三大特性 继承 多态 封装 ...

  5. js前台编码,asp.net后台解码 防止前台传值到后台为乱码

    js编码:     encodeURI() 后台解码:HttpUtility.UrlDecode()

  6. linux下服务启动脚本

    #!/usr/bin/env python# -*- coding: utf-8 -*-# @File : deployment.py# @Author: Anthony.waa# @Date : 2 ...

  7. js 判断设备的来源

    function deviceType(){ var ua = navigator.userAgent; var agent = ["Android", "iPhone& ...

  8. 脑图工具MindNode"附属节点"是什么意思 图解

    新手会发现在主节点上无论是按Tab子节点还是按Enter附属节点,都是向右延伸,感觉像没区别? 其实不然,从第二个节点开始,你再按 Tab 或者 Enter 就知道区别了. 废话少说,直接上图. 我觉 ...

  9. Unity 已下载工程包存放路径

    Mac Finder 中 Shift+Command+G输入后回车 ~/Library/Unity/Asset Store-5.x Windows 么有,自己上别的网站查去~

  10. 第十三章 Python并发编程

    并发编程之多进程 python中如果想要充分的利用多核CPU的资源,大部分情况需要使用多进程,python提供了multiprocessing multiprocessing模块用来开启子进程,并在子 ...