geotrellis使用(三)geotrellis数据处理过程分析
之前简单介绍了geotrellis的工作过程以及一个简单的demo,最近在此demo的基础上实现了SRTM DEM数据的实时分析以及高程实时处理,下面我就以我实现的上述功能为例,简单介绍一下geotrellis的数据处理过程。
一、原始数据处理
geotrellis支持geotiff的栅格数据(矢量数据还未研究),可以将geotiff直接缓存至hadoop框架下的Accumulo NOSQL数据库,并建立金字塔等,具体处理过程在geotrellis.spark.etl.Etl类中。具体代码如下:
def ingest[
I: Component[?, ProjectedExtent]: TypeTag: ? => TilerKeyMethods[I, K],
K: SpatialComponent: Boundable: TypeTag,
V <: CellGrid: TypeTag: Stitcher: (? => TileReprojectMethods[V]): (? => CropMethods[V]): (? => TileMergeMethods[V]): (? => TilePrototypeMethods[V])
](
args: Seq[String], keyIndexMethod: KeyIndexMethod[K], modules: Seq[TypedModule] = Etl.defaultModules
)(implicit sc: SparkContext) = {
implicit def classTagK = ClassTag(typeTag[K].mirror.runtimeClass(typeTag[K].tpe)).asInstanceOf[ClassTag[K]]
implicit def classTagV = ClassTag(typeTag[V].mirror.runtimeClass(typeTag[V].tpe)).asInstanceOf[ClassTag[V]] /* parse command line arguments */
val etl = Etl(args)
/* load source tiles using input module specified */
val sourceTiles = etl.load[I, V]
/* perform the reprojection and mosaicing step to fit tiles to LayoutScheme specified */
val (zoom, tiled) = etl.tile(sourceTiles)
/* save and optionally pyramid the mosaiced layer */
etl.save[K, V](LayerId(etl.conf.layerName(), zoom), tiled, keyIndexMethod)
重要的就是参数args,geotrellis根据不同的参数将数据进行不同的处理。具体的参数信息在https://github.com/geotrellis/geotrellis/blob/master/docs/spark-etl/spark-etl-intro.md
中均有介绍,这里介绍一些重要的配置。
二、发起服务
要对外提供数据,系统首先要能够发起服务,geotrellis建立一个服务也很容易,只需要使用以下语句系统遍自动的在host和相应的port上发起服务。
IO(Http) ! Http.Bind(service, host, port)
具体路由信息需要在service类中定义。service类需要继承Actor方法,并覆盖父类的receive方法。
override def receive = runRoute(serviceRoute)
def serviceRoute = get {
pathPrefix("gt") {
pathPrefix("tms")(tms) ~
path("geoTiff")(geoTiff)
} ~
pathEndOrSingleSlash {
getFromFile(staticPath + "/index.html")
} ~
pathPrefix("") {
getFromDirectory(staticPath)
}
}
以上就是建立了service的路由匹配表以及具体的控制器。当只请求IP及相应端口时会请求index.html,请求gt/tms时交给tms控制器,gt/geotiff交给geotiff控制器,其他会去匹配静态地址,如图片、
js、css等。
三、瓦片调用
WOLayer = new L.tileLayer(server +
'gt/tms/{z}/{x}/{y}', {
format: 'image/png',
});
WOLayer.addTo(map);
前台便会请求后台的tms控制器,tms控制器定义如下:
tms获取到请求的x、y、z、值,并从Accumulo中取出相应的瓦片交给leaftlet,leaflet将瓦片数据放到合适的位置,便完成了瓦片的加载,从Accumulo中取出瓦片的的大致代码如下:
val tile: Tile = tileReader.reader[SpatialKey, Tile](LayerId(LayerName, zoom)).read(key)
其中tileReader是一个AccumuloValueReader对象,很明显看出此对象是一个有关Accumulo的对象,其中包含Accumulo的用户密码等。LayerName就是上文中导入数据时候设置的layer参数对应的值。key是个SpatialKey对象,val key = SpatialKey(x, y),记录了瓦片x、y编号值。读到瓦片之后将数据发送到前台的代码如下:
respondWithMediaType(MediaTypes.`image/png`) {
val result = tile.renderPng().bytes
complete(result)
}
其实就是调用Tile类的renderPng方法,然后将Png数据转换成bytes发送到前端。
四、高级瓦片调用
val maskedTile = {
val poly = maskz.parseGeoJson[Polygon]
val extent: Extent = attributeStore.read[TileLayerMetadata[SpatialKey]](LayerId(LayerName, zoom), Fields.metadata).mapTransform(key)
tile.mask(extent, poly.geom)
}
其中maskz是前端想要显示内容的区域(Polygon),attributeStore是AccumuloAttributeStore对象,同样可以看出是一个操作Accumulo的对象,attributeStore主要完成的功能就是读取当前瓦片的extent即外接矩形范围。通过调用Tile类的mask方法将请求的polygon与extent做交集,只取相交的部分的数据,再将此数据发到前端,在前端便能看到只显示设定区域内瓦片的效果。
五、统计分析
val layerId = LayerId(layer, 0)
val raster = reader.read[SpatialKey, Tile, TileLayerMetadata[SpatialKey]](layerId)
val masked = raster.mask(polygon)
val mapTransform = masked.metadata.mapTransform
val maps = masked map { case (k: SpatialKey, tile: Tile) =>
val extent: Extent = mapTransform(k)
val hist: Histogram[Int] = tile.polygonalHistogram(extent, extent.toPolygon()) var max, min = hist.maxValue().getOrElse(0)
var count:Long = 0
var sum : Double = 0
hist.foreach((s1:Int, s2:Long) => {
if (max < s1) max = s1
if (min > s1) min = s1
sum += s1 * s2
count += s2
})
(max, min, sum, count)
}
val (max, min, sum, count) = maps reduce { case ((z1, a1, s1, c1), (z2, a2, s2, c2)) => (Math.max(z1, z2), Math.min(a1, a2), s1 + s2, c1 + c2) }
val avg = sum / count
val layerId = LayerId(layer, 0)表示取的是导入数据的第0层,由于使用floating方式此处必须是0。reader是一个AccumuloLayerReader对象,此处与上面的AccumuloVlaueReader不同之处在于上文中取固定key值得瓦片,此处需要根据范围进行选择,masked就是根据polygon筛选出的结果,是一个RDD[(SpatialKey, Tile)]对象,即存储着范围内的所有瓦片以及其编号信息。对masked进行map操作,获取其单个瓦片的extent,以及polygon内的统计信息,算出最大值,最小值以及高程加权和。最后对结果进行reduce操作,获取整体的最大值、最小值、平均值。(此处平均值算法可能不妥,希望有更好建议的能够留言,感激!)。将计算到的结果发到前端,前端就能实时显示统计分析结果。
六、结尾
geotrellis的功能非常强大,此处只是冰山一脚,后续还会进行相关研究,经验心得会及时总结到这里,以使自己理解的更加透彻,如果能帮助到其他人也是极好的!
七、参考链接
一、geotrellis使用初探
二、geotrellis使用(二)geotrellis-chatta-demo以及geotrellis框架数据读取方式初探
三、geotrellis使用(三)geotrellis数据处理过程分析
geotrellis使用(三)geotrellis数据处理过程分析的更多相关文章
- TCP 协议三次握手过程分析
TCP 协议三次握手过程分析 TCP(Transmission Control Protocol) 传输控制协议 TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接: ...
- jmeter BeanShell断言(三)数据处理
在做接口测试时,对响应数据的校验是非常重要的部分:在使用Jmeter进行接口测试时,有多种respone校验方式,比如响应断言.BeanShell断言等等,BeanShell断言可以自定义断言,自由灵 ...
- TCP协议三次握手过程分析【图解,简单清晰】
转自:http://www.cnblogs.com/rootq/articles/1377355.html TCP(Transmission Control Protocol) 传输控制协议 TCP是 ...
- TCP协议三次握手过程分析
TCP(Transmission Control Protocol) 传输控制协议 TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接: 位码即tcp标志位,有6种标 ...
- TCP协议三次握手过程分析(改)
TCP(Transmission Control Protocol) 传输控制协议 TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接: 位码即tcp标志位,有6种标 ...
- 三 Hive 数据处理 自定义函数UDF和Transform
三 Hive 自定义函数UDF和Transform 开篇提示: 快速链接beeline的方式: ./beeline -u jdbc:hive2://hadoop1:10000 -n hadoop 1 ...
- SSMP一次请求数据处理过程分析
控制器代码 @RequestMapping("/changeUserPwd") public TranMessage changeUserPwd(String oriPwd, St ...
- geotrellis使用(四)geotrellis数据处理部分细节
前面写了几篇博客介绍了Geotrellis的简单使用,具体链接在文后,今天我主要介绍一下Geotrellis在数据处理的过程中需要注意的细节,或者一些简单的经验技巧以供参考. 一.直接操作本地Geot ...
- geotrellis使用(三十)使用geotrellis读取PostGIS空间数据
前言 最近事情很多,各种你想不到的事情--such as singing and dancing--再加上最近又研究docker上瘾,所以geotrellis看上去似乎没有关注,其实我一直在脑中思考着 ...
随机推荐
- 原生js移动端touch事件实现上拉加载更多
大家都知道jQuery里没有touch事件,所以在移动端使用原生js实现上拉加载效果还是很不错的,闲话不多说,代码如下: //获取要操作的元素 var objSection = document.ge ...
- IDEA插件
Key Promoter 快捷键提示插件,帮助你快速记住快捷键.当你用鼠标完成某功能时,它会指示有相应的快捷键来完成刚才的功能,同时指导你为经常重复的操作建立快捷键. SerialVersionUID ...
- HDu--我要拿走你的蜡烛
我要拿走你的蜡烛 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- 执行mysqld_safe报错:mysqld does not exist or is not executable
执行mysqld_safe报错: [root@edu data]# /usr/local/mysql5.7/bin/mysqld_safe --user=mysql160427 12:41:28 my ...
- js中的变量类型
js 中输出定义变量的类型 typeof 变量名. var u: --underfined类型 var s = "你是一个好人": --string类型 var n = ...
- SQL Server2016 原生支持JSON
SQL Server2016 原生支持JSON SQL Server 2005 开始支持 XML 数据类型,提供原生的 XML数据类型.XML 索引以及各种管理 XML 或输出 XML 格式的函数. ...
- .Net开发笔记(十四) 基于“泵”的UDP通信(接上篇)
上一篇中说到了“泵”在编程中的作用以及一些具体用处,但没有实际demo,可能不好理解,这篇文章我分享一个UDP通信的demo,大概实现了类似“飞鸽传书”在局域网中文本消息和文件传输的功能.功能不全也不 ...
- java中文乱码解决之道(八)-----解决URL中文乱码问题
我们主要通过两种形式提交向服务器发送请求:URL.表单.而表单形式一般都不会出现乱码问题,乱码问题主要是在URL上面.通过前面几篇博客的介绍我们知道URL向服务器发送请求编码过程实在是实在太混乱了.不 ...
- C# Azure 存储-分布式缓存Redis工具类 RedisHelper
using System; using System.Collections.Generic; using Newtonsoft.Json; using StackExchange.Redis; na ...
- IOS关于LKDBHelper实体对象映射插件运用
一 插件简介: 其github地址:https://github.com/li6185377/LKDBHelper-SQLite-ORM 全面支持 NSArray,NSDictionary, Mode ...