【28.57%】【codeforces 711E】ZS and The Birthday Paradox
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
ZS the Coder has recently found an interesting concept called the Birthday Paradox. It states that given a random set of 23 people, there is around 50% chance that some two of them share the same birthday. ZS the Coder finds this very interesting, and decides to test this with the inhabitants of Udayland.
In Udayland, there are 2n days in a year. ZS the Coder wants to interview k people from Udayland, each of them has birthday in one of 2n days (each day with equal probability). He is interested in the probability of at least two of them have the birthday at the same day.
ZS the Coder knows that the answer can be written as an irreducible fraction . He wants to find the values of A and B (he does not like to deal with floating point numbers). Can you help him?
Input
The first and only line of the input contains two integers n and k (1 ≤ n ≤ 1018, 2 ≤ k ≤ 1018), meaning that there are 2n days in a year and that ZS the Coder wants to interview exactly k people.
Output
If the probability of at least two k people having the same birthday in 2n days long year equals (A ≥ 0, B ≥ 1, ), print the A and B in a single line.
Since these numbers may be too large, print them modulo 106 + 3. Note that A and B must be coprime before their remainders modulo 106 + 3 are taken.
Examples
input
3 2
output
1 8
input
1 3
output
1 1
input
4 3
output
23 128
Note
In the first sample case, there are 2^3 = 8 days in Udayland. The probability that 2 people have the same birthday among 2 people is clearly 1/8, so A = 1, B = 8.
In the second sample case, there are only 2^1 = 2 days in Udayland, but there are 3 people, so it is guaranteed that two of them have the same birthday. Thus, the probability is 1 and A = B = 1.
【题解】
每个人的生日都有2^n个可能;然后有k个人;
要求的是k个人里面至少有两个人的生日相同的概率;
正难则反;
求出所有人的生日都不同的概率p;
再用1减去p就可以了;
p=A(2^n,k)/((2^n)^k);
A是排列数;
写成乘法的形式就变成
p=(2^n)(2^n-1)(2^n-2)···(2^n-(k-1))/((2^n)^k)
分子分母同时除2^n;
(2^n-1)(2^n-2)···*(2^n-(k-1))/((2^(k-1))^n);
然后就是约分了;
分子的2的数目比分母少;
那么公约数就是2^temp次方了;
temp是分子的所含的因子2的个数;
而(2^n-1)···(2^n-(k-1))中
2^n-i的2因子的个数显然是i决定的,i有几个2因子,这项就有几个2因子;
比如2^n-2,2有一个2因子,所以这项有1个2因子;
实际上就可以转化为(k-1)!的2因子的个数;
有个关于阶乘(k-1)!素因子p的公式;
temp = ∑(k-1)/i;
其中i = p^1、p^2、p^3..p^m;
且2^m<= k-1;
求出来个数就好;
设为temp;
则可以约掉的数就是2^temp
分子和分母都要除2^temp;
但是要求余?
除法求余?
求乘法逆元!
乘法逆元?
比如要求(a/b)%p;
且(b*k)%p==1;
则(a/b)%p == (a*k)%p;
这个k就是b的乘法逆元。(可能有定义不对的地方。谅解下);
同时a/b一定要为整数;
证明:
因为(b*k)%p=1
所以b*k = p*x+1;
k = (p*x+1)/b;
则(a*k)%p=(apx/b+a/b)%p = ((a/b)*x*p)%p+(a/b)%p;
因为b能够整除a,所以a/b为整数,又乘上了p,则%p不就为0吗;
则(a*k)%p == (a/b)%p;
如何求这个k
b*k = p*x+1;
->k*b+(-x)*p=1
;
即解一个二元一次方程组;
->用扩展欧几里得算法求解;
扩展欧几里得算法?
ax+by=gcd(a,b);
这里如果a和b互质(因为p是质数而b是肯定小于p的(因为要取余嘛),所以b和p肯定是互质的);
ax+by=1
这里进行一下递推;
设
x1a+y1b=gcd(a,b);
x2b+y2(a%b) = gcd(b,a%b);
而又欧几里得算法gcd(a,b)==gcd(b,a%b);
所以x1a+y1b=x2b+y2(a%b);
a%b可以写出a-(a/b)*b 这里的/是整除
则
x1a+y1b=x2b+y2(a-(a/b)*b)
x1a+y1b=x2b+y2a-y2(a/b)*b
x1a+y1b=y2a+(x2-(a/b)*y2)*b
->x1=y2
->y1 =x2-(a/b)*y2
根据这个递推式
可以写出扩展欧几里得算法的程序
void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if (b == 0)//gcd(a,b)==gcd(a,0)==a;所以要使得xa+yb==gcd(a,b)只要让x==1,y==0即可
{
x = 1;y = 0;
return;
}
ex_gcd(b,a % b,x,y);
LL temp = y;
y = x-(a/b)*temp;
x = temp;
}
我们只要执行
ex_gcd(2^temp,p,ni,useless);
我们要的是这个方程的k
k*b+(-x)*p=1
所以最后得到的ni就是k,也即2^temp的乘法逆元;
对于分母直接乘上这个ni。就表示除去了公约数;
对于分子
(2^n-1)(2^n-2)···*(2^n-(k-1))
如果k-1>=mod;则我们最少得到了连续的mod个数;
则这里面肯定有mod的倍数;
所以此时分子为0;
直接输出 分母-‘0’ 分母即可;
对于k-1小于mod的情况,这个时候k很小了。直接暴力求解
(2^n-1)(2^n-2)···*(2^n-(k-1))%mod即可;
然后输出 (分母-分子+mod)%mod 分母 即可;
#include <cstdio>
#include <algorithm>
#define LL long long
using namespace std;
const LL mod = 1e6+3;
const int INF = 63;
LL n,k,tmp = 0,ni,fz,fm;
LL ksm(LL x,LL y)
{
if (y == 0)
return 1;
LL temp =ksm(x,y>>1);
temp = (temp*temp)%mod;
if (y&1)
temp = (temp*x)%mod;
return temp;
}
void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if (b == 0)
{
x = 1;y = 0;
return;
}
ex_gcd(b,a % b,x,y);
LL temp = y;
y = x-(a/b)*temp;
x = temp;
}
int main()
{
scanf("%I64d%I64d",&n,&k);
bool flag = false;
if (n >= 63)
flag = true;
else
{
LL temp = 1;
for (int i = 1;i <= n;i++)
{
temp = temp *2;
if (temp >=k)
{
flag = true;
break;
}
}
}
if (!flag)
{
puts("1 1");
return 0;
}
LL i;
for (i = 2;i <= (k-1);i<<=1)
tmp+=(k-1)/i;
tmp = ksm(2,tmp);
LL fm = ksm(ksm(2,k-1),n);
LL nu;//这个nu变量是没用的
ex_gcd(tmp,mod,ni,nu);
ni = (ni + mod) %mod;//求出来的ni是乘法逆元
fm = (fm * ni)%mod;
if (k-1>= mod)
printf("%I64d %I64d\n",fm,fm);
else//暴力求解分子
{
LL a = ksm(2,n);
LL fz = 1;
for (i = 1;i <= k-1;i++)
fz = (fz*((a-i+mod) % mod))%mod;
fz=(fz*ni)%mod;
fz = (fm-fz+mod)%mod;
printf("%I64d %I64d\n",fz,fm);
}
return 0;
}
【28.57%】【codeforces 711E】ZS and The Birthday Paradox的更多相关文章
- codeforces 711E E. ZS and The Birthday Paradox(数学+概率)
题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...
- 【28.57%】【codeforces 615C】 Running Track
time limit per test1 second memory limit per test512 megabytes inputstandard input outputstandard ou ...
- 【 BowWow and the Timetable CodeForces - 1204A 】【思维】
题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...
- 【57.97%】【codeforces Round #380A】Interview with Oleg
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【34.57%】【codeforces 557D】Vitaly and Cycle
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【75.28%】【codeforces 764B】Decoding
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【30.93%】【codeforces 558E】A Simple Task
time limit per test5 seconds memory limit per test512 megabytes inputstandard input outputstandard o ...
- 【77.78%】【codeforces 625C】K-special Tables
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- 【codeforces 760A】Petr and a calendar
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
随机推荐
- vue使用(二)
本节目标: 1.数据路径的三种方式 2.{{}}和v-html的区别 1.绑定图片的路径 方法一:直接写路径 <img src="http://p ...
- Android开发系列(二十):AutoCompleteTextView(自己主动完毕文本框)的功能和使用方法
当用户输入一定的字符之后,自己主动完毕文本框可以显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView可以依照用户的选择自己主动填写该文本框 AutoCo ...
- WCF学习笔记——对象序列化
当试图通过Web服务.WCF这样的远程处理技术将一个对象复制到远端时,具有对类型序列化的能力很关键. 一 序列化基础 序列化描述了持久化或传输一个对象的状态到流的过程(.NET将对象序列化到流,流是字 ...
- LA 5902 - Movie collection 树状数组(Fenwick树)
看题传送门 题目大意:XXX喜欢看电影,他有好多好多的影碟,每个影碟都有个独立的编号.开始是从下往上影碟的顺序是n~1,他每次拿出影碟的时候,你需要输出压在该影碟上的有几个.(拿出后其他影碟顺序不变) ...
- 怎样cp文件夹时忽略指定的文件夹和文件
在备份ltedecoder程序时,须要把此文件夹拷由到bak文件夹下.但decoder文件夹下有个大文件,不须要备份,还有日志问题,也不须要备份,怎样实现呢?? 方法: cd /source-dir ...
- vue学习笔记一:用Key管理可复用元素
vue为了高效的渲染元素,会尽可能的复用组件,而不是从头渲染,如下案例 <template> <div id="app"> <template v-i ...
- stm32的DMA传输一半中断
这里本想做一个录音程序 硬件很简单: MIC(麦克风)放大滤波电路---->stm32的ADC----->DMA通道----->一个数组缓存------->通过FATFS的 ...
- 【30.36%】【codeforces 740D】Alyona and a tree
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- 通过onTouch来确定点击的是listView哪一个item
事实上这主要是用了ListView的一个方法,通过坐标就能够确定当前是哪一个listView,别的我就不多说了直接看看代码吧, lv_flide.setOnTouchListener(new OnTo ...
- .NET Framework基础知识(四)(转载)
.反射:是编程的读取与类型相关联的元数据的行为.通过读取元数据,可以了解它是什么类型以及类型的成员. 比如类中的属性,方法,事件等.所属命名空间System.Reflection. 例:using S ...