【28.57%】【codeforces 711E】ZS and The Birthday Paradox
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
ZS the Coder has recently found an interesting concept called the Birthday Paradox. It states that given a random set of 23 people, there is around 50% chance that some two of them share the same birthday. ZS the Coder finds this very interesting, and decides to test this with the inhabitants of Udayland.
In Udayland, there are 2n days in a year. ZS the Coder wants to interview k people from Udayland, each of them has birthday in one of 2n days (each day with equal probability). He is interested in the probability of at least two of them have the birthday at the same day.
ZS the Coder knows that the answer can be written as an irreducible fraction . He wants to find the values of A and B (he does not like to deal with floating point numbers). Can you help him?
Input
The first and only line of the input contains two integers n and k (1 ≤ n ≤ 1018, 2 ≤ k ≤ 1018), meaning that there are 2n days in a year and that ZS the Coder wants to interview exactly k people.
Output
If the probability of at least two k people having the same birthday in 2n days long year equals (A ≥ 0, B ≥ 1, ), print the A and B in a single line.
Since these numbers may be too large, print them modulo 106 + 3. Note that A and B must be coprime before their remainders modulo 106 + 3 are taken.
Examples
input
3 2
output
1 8
input
1 3
output
1 1
input
4 3
output
23 128
Note
In the first sample case, there are 2^3 = 8 days in Udayland. The probability that 2 people have the same birthday among 2 people is clearly 1/8, so A = 1, B = 8.
In the second sample case, there are only 2^1 = 2 days in Udayland, but there are 3 people, so it is guaranteed that two of them have the same birthday. Thus, the probability is 1 and A = B = 1.
【题解】
每个人的生日都有2^n个可能;然后有k个人;
要求的是k个人里面至少有两个人的生日相同的概率;
正难则反;
求出所有人的生日都不同的概率p;
再用1减去p就可以了;
p=A(2^n,k)/((2^n)^k);
A是排列数;
写成乘法的形式就变成
p=(2^n)(2^n-1)(2^n-2)···(2^n-(k-1))/((2^n)^k)
分子分母同时除2^n;
(2^n-1)(2^n-2)···*(2^n-(k-1))/((2^(k-1))^n);
然后就是约分了;
分子的2的数目比分母少;
那么公约数就是2^temp次方了;
temp是分子的所含的因子2的个数;
而(2^n-1)···(2^n-(k-1))中
2^n-i的2因子的个数显然是i决定的,i有几个2因子,这项就有几个2因子;
比如2^n-2,2有一个2因子,所以这项有1个2因子;
实际上就可以转化为(k-1)!的2因子的个数;
有个关于阶乘(k-1)!素因子p的公式;
temp = ∑(k-1)/i;
其中i = p^1、p^2、p^3..p^m;
且2^m<= k-1;
求出来个数就好;
设为temp;
则可以约掉的数就是2^temp
分子和分母都要除2^temp;
但是要求余?
除法求余?
求乘法逆元!
乘法逆元?
比如要求(a/b)%p;
且(b*k)%p==1;
则(a/b)%p == (a*k)%p;
这个k就是b的乘法逆元。(可能有定义不对的地方。谅解下);
同时a/b一定要为整数;
证明:
因为(b*k)%p=1
所以b*k = p*x+1;
k = (p*x+1)/b;
则(a*k)%p=(apx/b+a/b)%p = ((a/b)*x*p)%p+(a/b)%p;
因为b能够整除a,所以a/b为整数,又乘上了p,则%p不就为0吗;
则(a*k)%p == (a/b)%p;
如何求这个k
b*k = p*x+1;
->k*b+(-x)*p=1
;
即解一个二元一次方程组;
->用扩展欧几里得算法求解;
扩展欧几里得算法?
ax+by=gcd(a,b);
这里如果a和b互质(因为p是质数而b是肯定小于p的(因为要取余嘛),所以b和p肯定是互质的);
ax+by=1
这里进行一下递推;
设
x1a+y1b=gcd(a,b);
x2b+y2(a%b) = gcd(b,a%b);
而又欧几里得算法gcd(a,b)==gcd(b,a%b);
所以x1a+y1b=x2b+y2(a%b);
a%b可以写出a-(a/b)*b 这里的/是整除
则
x1a+y1b=x2b+y2(a-(a/b)*b)
x1a+y1b=x2b+y2a-y2(a/b)*b
x1a+y1b=y2a+(x2-(a/b)*y2)*b
->x1=y2
->y1 =x2-(a/b)*y2
根据这个递推式
可以写出扩展欧几里得算法的程序
void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if (b == 0)//gcd(a,b)==gcd(a,0)==a;所以要使得xa+yb==gcd(a,b)只要让x==1,y==0即可
{
x = 1;y = 0;
return;
}
ex_gcd(b,a % b,x,y);
LL temp = y;
y = x-(a/b)*temp;
x = temp;
}
我们只要执行
ex_gcd(2^temp,p,ni,useless);
我们要的是这个方程的k
k*b+(-x)*p=1
所以最后得到的ni就是k,也即2^temp的乘法逆元;
对于分母直接乘上这个ni。就表示除去了公约数;
对于分子
(2^n-1)(2^n-2)···*(2^n-(k-1))
如果k-1>=mod;则我们最少得到了连续的mod个数;
则这里面肯定有mod的倍数;
所以此时分子为0;
直接输出 分母-‘0’ 分母即可;
对于k-1小于mod的情况,这个时候k很小了。直接暴力求解
(2^n-1)(2^n-2)···*(2^n-(k-1))%mod即可;
然后输出 (分母-分子+mod)%mod 分母 即可;
#include <cstdio>
#include <algorithm>
#define LL long long
using namespace std;
const LL mod = 1e6+3;
const int INF = 63;
LL n,k,tmp = 0,ni,fz,fm;
LL ksm(LL x,LL y)
{
if (y == 0)
return 1;
LL temp =ksm(x,y>>1);
temp = (temp*temp)%mod;
if (y&1)
temp = (temp*x)%mod;
return temp;
}
void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if (b == 0)
{
x = 1;y = 0;
return;
}
ex_gcd(b,a % b,x,y);
LL temp = y;
y = x-(a/b)*temp;
x = temp;
}
int main()
{
scanf("%I64d%I64d",&n,&k);
bool flag = false;
if (n >= 63)
flag = true;
else
{
LL temp = 1;
for (int i = 1;i <= n;i++)
{
temp = temp *2;
if (temp >=k)
{
flag = true;
break;
}
}
}
if (!flag)
{
puts("1 1");
return 0;
}
LL i;
for (i = 2;i <= (k-1);i<<=1)
tmp+=(k-1)/i;
tmp = ksm(2,tmp);
LL fm = ksm(ksm(2,k-1),n);
LL nu;//这个nu变量是没用的
ex_gcd(tmp,mod,ni,nu);
ni = (ni + mod) %mod;//求出来的ni是乘法逆元
fm = (fm * ni)%mod;
if (k-1>= mod)
printf("%I64d %I64d\n",fm,fm);
else//暴力求解分子
{
LL a = ksm(2,n);
LL fz = 1;
for (i = 1;i <= k-1;i++)
fz = (fz*((a-i+mod) % mod))%mod;
fz=(fz*ni)%mod;
fz = (fm-fz+mod)%mod;
printf("%I64d %I64d\n",fz,fm);
}
return 0;
}
【28.57%】【codeforces 711E】ZS and The Birthday Paradox的更多相关文章
- codeforces 711E E. ZS and The Birthday Paradox(数学+概率)
题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...
- 【28.57%】【codeforces 615C】 Running Track
time limit per test1 second memory limit per test512 megabytes inputstandard input outputstandard ou ...
- 【 BowWow and the Timetable CodeForces - 1204A 】【思维】
题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...
- 【57.97%】【codeforces Round #380A】Interview with Oleg
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【34.57%】【codeforces 557D】Vitaly and Cycle
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【75.28%】【codeforces 764B】Decoding
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【30.93%】【codeforces 558E】A Simple Task
time limit per test5 seconds memory limit per test512 megabytes inputstandard input outputstandard o ...
- 【77.78%】【codeforces 625C】K-special Tables
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- 【codeforces 760A】Petr and a calendar
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
随机推荐
- jmeter--函数助手对话框之参数详解
详解JMeter函数和变量 测试人员可以在JMeter的选项菜单中找到函数助手对话框("Function Helper"对话框),如图11-1所示. 图11-1 函数助手(Func ...
- jqgrid 实现行编辑,表单编辑的列联动
这个问题的场景相信大家都遇到过,比方有A,B,C三列,B,C列均为下拉框.可是C列的值是由B列的值来决定的.即C列中的值是动态变化的,变化的根据就是B列中你选择的值. 本文给出的是一个有用,简易快捷的 ...
- 利用Attribute实现Aop
Aop“面向切面编程”,与OOP“面向对象编程”一样是一种编程思路.个人理解:在不改变原有逻辑的基础上,注入其他行为. 基础代码(仿MVC拦截器实现) namespace HGL.Toolkit.Ao ...
- 清除浮动.md
清除浮动的三种方法 1 加空div层(.clear) 2 overflow属性设置(.clearo) 3 :after伪元素(.clearfix) <!DOCTYPE html> < ...
- 【AtCoder ABC 075 B】Minesweeper
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 模拟,把#换成1 八个方向加一下就好. [代码] #include <bits/stdc++.h> using name ...
- IOS计算两点之间的距离
//广州经纬度 CLLocationCoordinate2D guangZhouLocation; guangZhouLocation.latitude = 23.20; guangZhouLocat ...
- FireBreath与JS交互1
FireBreath提供接口供JS调用,提供的接口需要注册 必须在JSAPI对象的构造函数中注册,也就是 CxxxAPI::CxxxAPI()这个函数中调用 registerMethod(" ...
- 【BZOJ 3156】防御准备
[链接] 链接 [题意] 在这里输入题意 [题解] 把a倒过来 设f[i]表示在i放一个防御塔的最小花费; 我们如果从j转移过来 就表示j+1..i-1这一段放人偶. s[i] = 1 + 2 + . ...
- shiro实现登录安全认证(转)
shiro实现登录安全认证 shiro的优势,不需要再代码里面判断是否登录,是否有执行的权限,实现了从前端页面到后台代码的权限的控制非常的灵活方便 传统的登录认证方式是,从前端页面获取到用户输入的账号 ...
- Android自定义组件系列【8】——遮罩文字动画
遮罩文字的动画我们在Flash中非常常见,作为Android的应用开发者你是否也想将这种动画做到你的应用中去呢?这一篇文章我们来看看如何自定义一个ImageView来实现让一张文字图片实现文字的遮罩闪 ...