time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

ZS the Coder has recently found an interesting concept called the Birthday Paradox. It states that given a random set of 23 people, there is around 50% chance that some two of them share the same birthday. ZS the Coder finds this very interesting, and decides to test this with the inhabitants of Udayland.

In Udayland, there are 2n days in a year. ZS the Coder wants to interview k people from Udayland, each of them has birthday in one of 2n days (each day with equal probability). He is interested in the probability of at least two of them have the birthday at the same day.

ZS the Coder knows that the answer can be written as an irreducible fraction . He wants to find the values of A and B (he does not like to deal with floating point numbers). Can you help him?

Input

The first and only line of the input contains two integers n and k (1 ≤ n ≤ 1018, 2 ≤ k ≤ 1018), meaning that there are 2n days in a year and that ZS the Coder wants to interview exactly k people.

Output

If the probability of at least two k people having the same birthday in 2n days long year equals (A ≥ 0, B ≥ 1, ), print the A and B in a single line.

Since these numbers may be too large, print them modulo 106 + 3. Note that A and B must be coprime before their remainders modulo 106 + 3 are taken.

Examples

input

3 2

output

1 8

input

1 3

output

1 1

input

4 3

output

23 128

Note

In the first sample case, there are 2^3 = 8 days in Udayland. The probability that 2 people have the same birthday among 2 people is clearly 1/8, so A = 1, B = 8.

In the second sample case, there are only 2^1 = 2 days in Udayland, but there are 3 people, so it is guaranteed that two of them have the same birthday. Thus, the probability is 1 and A = B = 1.

【题解】



每个人的生日都有2^n个可能;然后有k个人;

要求的是k个人里面至少有两个人的生日相同的概率;

正难则反;

求出所有人的生日都不同的概率p;

再用1减去p就可以了;

p=A(2^n,k)/((2^n)^k);

A是排列数;

写成乘法的形式就变成

p=(2^n)(2^n-1)(2^n-2)···(2^n-(k-1))/((2^n)^k)

分子分母同时除2^n;

(2^n-1)(2^n-2)···*(2^n-(k-1))/((2^(k-1))^n);

然后就是约分了;

分子的2的数目比分母少;

那么公约数就是2^temp次方了;

temp是分子的所含的因子2的个数;

而(2^n-1)···(2^n-(k-1))中

2^n-i的2因子的个数显然是i决定的,i有几个2因子,这项就有几个2因子;

比如2^n-2,2有一个2因子,所以这项有1个2因子;

实际上就可以转化为(k-1)!的2因子的个数;

有个关于阶乘(k-1)!素因子p的公式;

temp = ∑(k-1)/i;

其中i = p^1、p^2、p^3..p^m;

且2^m<= k-1;

求出来个数就好;

设为temp;

则可以约掉的数就是2^temp

分子和分母都要除2^temp;

但是要求余?

除法求余?

求乘法逆元!

乘法逆元?

比如要求(a/b)%p;

且(b*k)%p==1;

则(a/b)%p == (a*k)%p;

这个k就是b的乘法逆元。(可能有定义不对的地方。谅解下);

同时a/b一定要为整数;

证明:

因为(b*k)%p=1

所以b*k = p*x+1;

k = (p*x+1)/b;

则(a*k)%p=(apx/b+a/b)%p = ((a/b)*x*p)%p+(a/b)%p;

因为b能够整除a,所以a/b为整数,又乘上了p,则%p不就为0吗;

则(a*k)%p == (a/b)%p;

如何求这个k

b*k = p*x+1;

->k*b+(-x)*p=1

;

即解一个二元一次方程组;

->用扩展欧几里得算法求解;

扩展欧几里得算法?

ax+by=gcd(a,b);

这里如果a和b互质(因为p是质数而b是肯定小于p的(因为要取余嘛),所以b和p肯定是互质的);

ax+by=1

这里进行一下递推;



x1a+y1b=gcd(a,b);

x2b+y2(a%b) = gcd(b,a%b);

而又欧几里得算法gcd(a,b)==gcd(b,a%b);

所以x1a+y1b=x2b+y2(a%b);

a%b可以写出a-(a/b)*b 这里的/是整除



x1a+y1b=x2b+y2(a-(a/b)*b)

x1a+y1b=x2b+y2a-y2(a/b)*b

x1a+y1b=y2a+(x2-(a/b)*y2)*b

->x1=y2

->y1 =x2-(a/b)*y2

根据这个递推式

可以写出扩展欧几里得算法的程序

void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if (b == 0)//gcd(a,b)==gcd(a,0)==a;所以要使得xa+yb==gcd(a,b)只要让x==1,y==0即可
{
x = 1;y = 0;
return;
}
ex_gcd(b,a % b,x,y);
LL temp = y;
y = x-(a/b)*temp;
x = temp;
}

我们只要执行

ex_gcd(2^temp,p,ni,useless);

我们要的是这个方程的k

k*b+(-x)*p=1

所以最后得到的ni就是k,也即2^temp的乘法逆元;

对于分母直接乘上这个ni。就表示除去了公约数;

对于分子

(2^n-1)(2^n-2)···*(2^n-(k-1))

如果k-1>=mod;则我们最少得到了连续的mod个数;

则这里面肯定有mod的倍数;

所以此时分子为0;

直接输出 分母-‘0’ 分母即可;

对于k-1小于mod的情况,这个时候k很小了。直接暴力求解

(2^n-1)(2^n-2)···*(2^n-(k-1))%mod即可;

然后输出 (分母-分子+mod)%mod 分母 即可;

#include <cstdio>
#include <algorithm>
#define LL long long using namespace std; const LL mod = 1e6+3;
const int INF = 63; LL n,k,tmp = 0,ni,fz,fm; LL ksm(LL x,LL y)
{
if (y == 0)
return 1;
LL temp =ksm(x,y>>1);
temp = (temp*temp)%mod;
if (y&1)
temp = (temp*x)%mod;
return temp;
} void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if (b == 0)
{
x = 1;y = 0;
return;
}
ex_gcd(b,a % b,x,y);
LL temp = y;
y = x-(a/b)*temp;
x = temp;
} int main()
{
scanf("%I64d%I64d",&n,&k);
bool flag = false;
if (n >= 63)
flag = true;
else
{
LL temp = 1;
for (int i = 1;i <= n;i++)
{
temp = temp *2;
if (temp >=k)
{
flag = true;
break;
}
}
}
if (!flag)
{
puts("1 1");
return 0;
}
LL i;
for (i = 2;i <= (k-1);i<<=1)
tmp+=(k-1)/i;
tmp = ksm(2,tmp);
LL fm = ksm(ksm(2,k-1),n);
LL nu;//这个nu变量是没用的
ex_gcd(tmp,mod,ni,nu);
ni = (ni + mod) %mod;//求出来的ni是乘法逆元
fm = (fm * ni)%mod;
if (k-1>= mod)
printf("%I64d %I64d\n",fm,fm);
else//暴力求解分子
{
LL a = ksm(2,n);
LL fz = 1;
for (i = 1;i <= k-1;i++)
fz = (fz*((a-i+mod) % mod))%mod;
fz=(fz*ni)%mod;
fz = (fm-fz+mod)%mod;
printf("%I64d %I64d\n",fz,fm);
}
return 0;
}

【28.57%】【codeforces 711E】ZS and The Birthday Paradox的更多相关文章

  1. codeforces 711E E. ZS and The Birthday Paradox(数学+概率)

    题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...

  2. 【28.57%】【codeforces 615C】 Running Track

    time limit per test1 second memory limit per test512 megabytes inputstandard input outputstandard ou ...

  3. 【 BowWow and the Timetable CodeForces - 1204A 】【思维】

    题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...

  4. 【57.97%】【codeforces Round #380A】Interview with Oleg

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  5. 【34.57%】【codeforces 557D】Vitaly and Cycle

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  6. 【75.28%】【codeforces 764B】Decoding

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  7. 【30.93%】【codeforces 558E】A Simple Task

    time limit per test5 seconds memory limit per test512 megabytes inputstandard input outputstandard o ...

  8. 【77.78%】【codeforces 625C】K-special Tables

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  9. 【codeforces 760A】Petr and a calendar

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

随机推荐

  1. python课程:python3的数字与字符串

    一下是基于python2的教程的 python中有 多个数据类型,和,两种字符串类型 他们都是不可变的.

  2. PB导出数据excel格式dw2xls

    PB导出数据excel格式dw2xls 使用DW2XLS控件 语法 uf_save_dw_as_excel ( dw, filename ) 參数 dw A reference to the data ...

  3. OAM配置代理手冊

     创建webgate与ohs共享实例,copy文件到ohs实例文件夹. 1)进入webgage部署工具文件夹       Cd  /%webgate_home%/webgate/ohs/tools ...

  4. CSS布局开篇

    原文: 简书原文:https://www.jianshu.com/p/2c78b927f8c4 开篇 这是我写CSS布局的第一篇文章,之所以将布局从中摘出来单独放一部分是因为我觉得光是布局这块内容就有 ...

  5. poj1564 Sum It Up (zoj 1711 hdu 1258) DFS

    POJhttp://poj.org/problem?id=1564 ZOJhttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=711 ...

  6. Python 奇葩语法

    a = 1, 2, 3 赋值后的结果,a == (1, 2, 3),将一个元组(tuple)赋给了变量 a (1, 2) + (3, ) ⇒ (1, 2, 3),并不能说明 tuple 可以添加新的元 ...

  7. DI:依赖注入详解

    DI(依赖注入) 依赖注入的理解: 一般写程序的时候service层都需要用到dao层,所以一般都是在service层里面new  dao ,而现在利用依赖注入的方式,直接把dao给了service层 ...

  8. 【C++竞赛 F】yyy的三角形

    时间限制:2s 内存限制:32MB 问题描述 yyy对三角形非常感兴趣,他有n个木棍,他正在用这些木棍组成三角形.这时xxx拿了两根木棍过来,xxx希望yyy能给他一根木棍,使得xxx可以组成一个三角 ...

  9. php面试题12(多态web服务器共享session的方法:将session存到数据库)($val=&$data[$key];)

    php面试题12(多态web服务器共享session的方法:将session存到数据库)($val=&$data[$key];) 一.总结 1.多态web服务器共享session的方法: ...

  10. 【u005】封锁阳光大学

    Time Limit: 1 second Memory Limit: 128 MB [问题描述] 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹 ...