ACdream 1229 Data Transmission
Data Transmission
Problem Description
Recently one known microprocessor productioner has developed the new type of microprocessors that can be used in difficult mathematical calculations. The processor contains N so called nodes that are connected by M channels. Data organized in packets, pass from source node to target node by channels and are processed by the intermediate nodes.
Each node has its level that determines the type of work this node does. The source node has level 1 while the target node has level L. For data to be correctly processed each packet of it must pass in order all nodes with levels from 1 to L - that is, first it must be processed by the source node, after that by some node of level 2, so on, and finally by the target node.
Nodes can process as much data as they are asked to, however channels can only transmit the limited amount of data in a unit of time. For synchronization reasons, any data can only be transmitted from a node with level i to some node with level i + 1 and cannot be transmitted between nodes which levels differ by more than one or from a node of higher level to a node of lower level. Nodes are so fast that they can process data packet immediately, so as soon as it reaches the node it is ready to be transmitted to the node of the next level.
No data should stall in any node and no node can produce its own data, so each unit of time the number of packets coming to any node except source and target, must be equal to the number of packets leaving this node.
The scheme of data transmission that satisfies the conditions provided is called the data flow. Data flow is called blocking if there is no way to increase the value of the data flow just increasing the amount of data passing by some channels (however, there may be the way to increase it, decreasing the amount of data for some channels and increasing for other ones).
Input
The first line of the input file contains three integer numbers - N, M and L (2 <= N <= 1 500, 1 <= M <= 300 000, 2 <= L <= N). Let nodes be numbered from 1 to N. The second line contains N integer numbers, i-th of them is the level li of the i-th node (1 <= li <= L). Only one node has level 1, that is the source node, and only one node has level L - that is the target node.
Next M lines describe channels, each lines contains three integer numbers a, b and c - nodes connected by this channel and its capacity in packets per unit of time (1 <= a, b <= N, lb = la+1, 1 <= c <= 106).
Two nodes can be connected by at most one channel.
Output
Sample Input
6 7 4
1 2 3 4 3 2
1 2 3
2 3 3
3 4 4
1 6 4
6 3 2
5 4 3
6 5 4
Sample Output
3
3
4
4
1
3
3
Source
Manager
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
struct arc{
int to,flow,next;
arc(int x = ,int y = ,int z = -){
to = x;
flow = y;
next = z;
}
};
arc e[];
int head[maxn],d[maxn],lev[maxn],_rank[maxn],in[maxn],out[maxn];
int n,m,L,S,T,hd,tl,tot,cur[maxn],q[maxn];
void myscanf(int &x){
char ch;
while((ch = getchar()) > '' || ch < '');
x = ;
x = x* + ch - '';
while((ch = getchar()) >= '' && ch <= '')
x = x* + ch - '';
}
void add(int u,int v,int flow){
e[tot] = arc(v,flow,head[u]);
head[u] = tot++;
e[tot] = arc(u,,head[v]);
head[v] = tot++;
}
bool cmp(const int &x,const int &y){
return lev[x] < lev[y];
}
void greedy(){
memset(in,,sizeof(in));
memset(out,,sizeof(out));
sort(_rank+,_rank+n+,cmp);
in[S] = INF;
for(int i = ; i <= n; i++){
int u = _rank[i];
for(int j = head[u]; ~j; j = e[j].next){
if(!(j&) && in[u] > out[u]){
int f = min(e[j].flow,in[u] - out[u]);
in[e[j].to] += f;
out[u] += f;
}
}
}
memset(in,,sizeof(in));
in[T] = INF;
for(int i = n; i >= ; --i){
int v = _rank[i];
for(int j = head[v]; ~j; j = e[j].next){
int u = e[j].to;
if(j& && out[u] > in[u]){
int f = min(e[j^].flow,min(out[u] - in[u],in[v]));
in[v] -= f;
in[u] += f;
e[j].flow += f;
e[j^].flow -= f;
}
}
}
}
bool bfs(){
memset(d,-,sizeof(d));
hd = tl = ;
q[tl++] = S;
d[S] = ;
while(hd < tl){
int u = q[hd++];
for(int i = head[u]; ~i; i = e[i].next){
if(e[i].flow && d[e[i].to] == -){
d[e[i].to] = d[u] + ;
q[tl++] = e[i].to;
}
}
}
return d[T] > -;
}
int dfs(int u,int low){
if(u == T) return low;
int tmp = ,a;
for(int &i = cur[u]; ~i; i = e[i].next){
if(e[i].flow && d[e[i].to] == d[u] + && (a=dfs(e[i].to,min(low,e[i].flow)))){
tmp += a;
low -= a;
e[i].flow -= a;
e[i^].flow += a;
if(!low) break;
}
}
if(!tmp) d[u] = -;
return tmp;
}
int dinic(){
int tmp = ;
while(bfs()){
memcpy(cur,head,sizeof(head));
tmp += dfs(S,INF);
}
return tmp;
}
int main() {
int i,u,v,cap;
scanf("%d %d %d",&n,&m,&L);
memset(head,-,sizeof(head));
for(i = ; i <= n; i++){
myscanf(lev[i]);
_rank[i] = i;
if(lev[i] == ) S = i;
else if(lev[i] == L) T = i;
}
for(int i = tot = ; i < m; i++){
myscanf(u);
myscanf(v);
myscanf(cap);
add(u,v,cap);
}
greedy();
dinic();
for(int i = ; i < m; i++)
printf("%d\n",e[i<<|].flow);
return ;
}
ACdream 1229 Data Transmission的更多相关文章
- ZOJ-2364 Data Transmission 分层图阻塞流 Dinic+贪心预流
题意:给定一个分层图,即只能够在相邻层次之间流动,给定了各个顶点的层次.要求输出一个阻塞流. 分析:该题直接Dinic求最大流TLE了,网上说采用Isap也TLE,而最大流中的最高标号预流推进(HLP ...
- Toward Scalable Systems for Big Data Analytics: A Technology Tutorial (I - III)
ABSTRACT Recent technological advancement have led to a deluge of data from distinctive domains (e.g ...
- Chrysler -- CCD (Chrysler Collision Detection) Data Bus
http://articles.mopar1973man.com/general-cummins/34-engine-system/81-ccd-data-bus CCD (Chrysler Coll ...
- Efficient data transfer through zero copy
Efficient data transfer through zero copy https://www.ibm.com/developerworks/library/j-zerocopy/ Eff ...
- Buffer Data
waylau/netty-4-user-guide: Chinese translation of Netty 4.x User Guide. 中文翻译<Netty 4.x 用户指南> h ...
- Data Replication in a Multi-Cloud Environment using Hadoop & Peer-to-Peer technologies
http://fbevmware.blogspot.com/2013/12/data-replication-in-multi-cloud.html 要FQ... —————————————————— ...
- PatentTips – RDMA data transfer in a virtual environment
BACKGROUND Embodiments of this invention relate to RDMA (remote direct memory access) data transfer ...
- Indexing Sensor Data
In particular embodiments, a method includes, from an indexer in a sensor network, accessing a set o ...
- Data analysis system
A data analysis system, particularly, a system capable of efficiently analyzing big data is provided ...
随机推荐
- Cocos2d-x 3.0final 终结者系列教程02-开发环境的搭建
本文主要以Mac平台和XCode5为基本系统环境和C++编程工具来介绍Cocos2d-x3.0final版的安装. 一.系统准备(预计要花掉半个月工资) MacBook Pro一台(本人的比較老.11 ...
- luogu4012 深海机器人问题 网络流
关键词:最小费用最大流 题目大意:海底是个网格,每个网格边有一定价值的海底化石.每个路线可经过无限个机器人,但上面的化石只能采一次.机器人可沿网格边向东或向北移动.给定机器人起点和终点位置及所能容纳的 ...
- 搜索分析(DFS、BFS、递归、记忆化搜索)
搜索分析(DFS.BFS.递归.记忆化搜索) 1.线性查找 在数组a[]={0,1,2,3,4,5,6,7,8,9,10}中查找1这个元素. (1)普通搜索方法,一个循环从0到10搜索,这里略. (2 ...
- VMware 安装LINUX系统(一)
我用的是WORKSTATION 15 PRO https://www.vmware.com/asean/products/workstation-pro/ 1.安装LINUX 打开Vmware,点击创 ...
- python笔记:文件操作
1.逐行打印整个文件 # -*- coding: utf-8 -*- f = open("test",'r',encoding="utf-8") count = ...
- Linux下JDK Tomcat MySQL基本环境搭建
1. 安装JDK wget http://download.oracle.com/otn-pub/java/jdk/8u181-b13/96a7b8442fe848ef90c96a2fad6ed6d1 ...
- c# 正则表达式regex心得
5.1. C#中的正则表达式的简介 C#中的Regex类处理正则表达式. 5.2. C#正则表达式的语法 5.3. C#中的正则表达式的特点 下面总结一些C#中的正则表达式相对于其他语言中的正则表达式 ...
- 3.TinkPHP中的模型
1.配置数据库的连接设置 数据库的连接配置项可以在系统的主配置文件中 2.什么是模型? 模型是MVC 三大组成部分的M,作用是负责与数据表达额交互(CRUD) 3.模型的创建 命名规范:不带前缀的标明 ...
- 在django中应用装饰器(一)
在新写的博客应用中,涉及很多关于权限的问题,比如修改用户信息,博客的修改与删除,虽然默认的提交信息都是session的用户,但是也应该防止一下篡改提交的可能,之前想的是在每个view中加一段判断的逻辑 ...
- draw9patch在SDK->tools找不到,在Android Studio点击图片没找到draw9patch
draw9patch在SDK->tools找不到,在Android Studio点击图片没找到draw9patch 第一个问题: Google把draw9patch集成在Android Stud ...