AVL 树的插入、删除、旋转归纳
/**
* Created by CG on 16/11/20.
*/ var TreeNode = function(){
this.parent = null;
this.left = null;
this.right = null; this.value = null;
}; var AVLTree = { insert : function (value) {
this.log("新加节点:new add: " + value);
if(this._tree == null){
var node = new TreeNode();
node.value = value;
this._tree = node;
return;
} var newNode = new TreeNode();
newNode.value = value; var currNode = this._tree;
while(true){
if(currNode == null){
this.log(" ======== currNode: null");
return;
} //走向左子树
if(value <= currNode.value){
this.log(" to left: value: " + value + " currValue: " + currNode.value);
if(currNode.left){
currNode = currNode.left;
continue;
}
else {
newNode.parent = currNode;
currNode.left = newNode;
this.balanceTree(currNode, newNode);
break;
}
}
//走向右子树
else {
this.log(" to right: value: " + value + " currValue: " + currNode.value);
if(currNode.right){
currNode = currNode.right;
continue;
}
else {
newNode.parent = currNode;
currNode.right = newNode;
this.balanceTree(currNode, newNode);
break;
}
}
}
},
balanceTree : function (currNode, newNode) {
if(!currNode){
return;
} this.printTreeByLevel();
while(currNode){
this.log("---------===========--- check if adjust: " + currNode.value);
if(currNode.parent){
this.log(" parent: " + currNode.parent.value);
}
var leftDepth = this.calcuDepth(currNode.left);
var rightDepth = this.calcuDepth(currNode.right);
this.log("leftDepth: " + leftDepth + " rightDepth: " + rightDepth);
if(leftDepth - rightDepth == 2){
if(newNode == null){
this.rightRotate(currNode);
}
else if(newNode.value < currNode.value && newNode.value < currNode.left.value){
this.log("LL");
this.rightRotate(currNode);
}
else if(newNode.value < currNode.value && newNode.value > currNode.left.value){
this.log("LR");
this.leftRotate(currNode.left);
this.rightRotate(currNode);
}
}
else if(rightDepth - leftDepth == 2){
if(newNode == null){
this.leftRotate(currNode);
}
else if(newNode.value > currNode.value && newNode.value > currNode.right.value){
this.log("RR");
this.leftRotate(currNode);
}
else if(newNode.value > currNode.value && newNode.value < currNode.right.value){
this.log("RL");
this.rightRotate(currNode.right);
this.leftRotate(currNode);
}
} currNode = currNode.parent;
this.printTreeByLevel();
}
},
leftRotate : function (currNode) {
this.log("leftRotate: " + currNode.value);
var oldRight = currNode.right; //如果当前节点就是根节点,更新外界引用的根节点
if(currNode == this._tree){
this._tree = oldRight;
}
else {
//更新变动前的 currNode 的 parent 的指向
if(currNode.parent.left == currNode){
currNode.parent.left = oldRight;
}
else if(currNode.parent.right == currNode){
currNode.parent.right = oldRight;
}
} //更新 curr 和 oldRight 的 parent
oldRight.parent = currNode.parent; //更新 curr 和 oldRight 的 child
currNode.right = oldRight.left;
if(oldRight.left){
oldRight.left.parent = currNode;
} oldRight.left = currNode;
currNode.parent = oldRight; this._tree.parent = null;
return oldRight;
},
rightRotate : function (currNode) {
this.log("rightRotate: " + currNode.value);
var oldLeft = currNode.left; //如果当前节点就是根节点,更新外界引用的根节点
if(currNode == this._tree){
this._tree = oldLeft;
}
else {
//更新变动前的 currNode 的 parent 的指向
if(currNode.parent.left == currNode){
currNode.parent.left = oldLeft;
}
else if(currNode.parent.right == currNode){
currNode.parent.right = oldLeft;
}
} //更新 curr 和 oldLeft 的 parent
oldLeft.parent = currNode.parent; //更新 curr 和 oldLeft 的 child
currNode.left = oldLeft.right;
if(oldLeft.right){
oldLeft.right.parent = currNode;
} oldLeft.right = currNode;
currNode.parent = oldLeft; this._tree.parent = null;
return oldLeft;
}, /**
* 计算左右节点的深度。叶子节点的深度都是 1,依次向上加 1
* @param treeNode
* @returns {number}
*/
calcuDepth : function (treeNode) {
if(!treeNode){
return 0;
}
if(treeNode.left == null && treeNode.right == null){
return 1;
}
return 1 + Math.max(this.calcuDepth(treeNode.left), this.calcuDepth(treeNode.right));
}, /**
* 从树中删除一个节点
* @param value
*/
remove : function (value) {
this.log(" ===== 将要删除元素:" + value);
if(!value){
return;
} //定位到节点
var currNode = this._tree;
while(currNode){
if(currNode.value == value){
break;
}
currNode = value > currNode.value ? currNode.right : currNode.left;
}
if(currNode.value != value){
this.log("没找到啊");
return;
} var targetNode = null;
//删除该节点
if(currNode.left){
//有左子树,找到其中最大值来替代空位
targetNode = this.findMaxNode(currNode.left);
this.log(" == currNode.left: " + targetNode.value); //更新 target 父节点的 child 指向
if(targetNode.parent != currNode){
var newChild = targetNode.left ? targetNode.left : targetNode.right;
if(targetNode.parent.left == targetNode){
targetNode.parent.left = newChild;
}
else {
targetNode.parent.right = newChild;
}
}
//更新 target 的 parent 指向
targetNode.parent = currNode.parent; // 更新 target 的 right 指向
targetNode.right = currNode.right;
if(currNode.right){
currNode.right.parent = targetNode;
}
// 更新 target 的 left 指向 、、一定要注意避免自身死循环
if(currNode.left != targetNode){
targetNode.left = currNode.left;
currNode.left.parent = targetNode;
}
}
//没有左子树,但是有右子树,直接把右子树提上去就好了
else if(currNode.right){
targetNode = currNode.right;
targetNode.parent = currNode.parent;
this.log(" == currNode.right: " + targetNode.value);
}
//如果 curr 是叶子节点,只要更新 curr 的 parent 就可以了,没有额外处理 //更新 curr 父节点的 child 指向
if(currNode.parent && currNode.parent.left == currNode){
currNode.parent.left = targetNode;
}
else if(currNode.parent && currNode.parent.right == currNode){
currNode.parent.right = targetNode;
}
else {
this._tree = targetNode; //说明是 根节点
} this.log(" +++++++++++++ ");
this.printTreeByLevel();
this.balanceTree(targetNode == null ? currNode.parent : targetNode);
this.log(" +++++++++++++ ");
}, findMaxNode : function(treeNode){
while(treeNode){
if(treeNode.right){
treeNode = treeNode.right;
}
else {
return treeNode;
}
}
return treeNode;
}, log : function (str) {
console.log(str);
},
/**
* 按照层级打印一棵树的各层节点名字
**/
printTreeByLevel : function () {
this.log("-----------------------");
if(!this._tree){
this.log(" === empty ===");
return;
}
var nodeList = [];
nodeList.push(this._tree);
while(nodeList.length > 0){
var len = nodeList.length;
var value = "";
for(var i=0; i<len; ++i){
var currNode = nodeList[i];
value += currNode.value + " ";
if(currNode.left){
nodeList.push(currNode.left);
}
if(currNode.right){
nodeList.push(currNode.right);
}
}
this.log(value); nodeList = nodeList.slice(len);
}
},
}; AVLTree.printTreeByLevel();
AVLTree.log("====================================================================================================");
var list = [3,7,9,23,45, 1,5,14,25,24, 13,11, 26];
for(var index in list){
AVLTree.insert(list[index]);
}
AVLTree.log("====================================================================================================");
AVLTree.printTreeByLevel();
// AVLTree.remove(1);
// AVLTree.remove(25);
// AVLTree.printTreeByLevel();
AVL 树的插入、删除、旋转归纳的更多相关文章
- AVL树的插入删除查找算法实现和分析-1
至于什么是AVL树和AVL树的一些概念问题在这里就不多说了,下面是我写的代码,里面的注释非常详细地说明了实现的思想和方法. 因为在操作时真正需要的是子树高度的差,所以这里采用-1,0,1来表示左子树和 ...
- AVL树的插入和删除
一.AVL 树 在计算机科学中,AVL树是最早被发明的自平衡二叉查找树.在AVL树中,任一节点对应的两棵子树的最大高度差为 1,因此它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下的时间复杂度 ...
- AVL树的插入操作(旋转)图解
=================================================================== AVL树的概念 在说AVL树的概念之前,我们需要清楚 ...
- AVL树的插入与删除
AVL 树要在插入和删除结点后保持平衡,旋转操作必不可少.关键是理解什么时候应该左旋.右旋和双旋.在Youtube上看到一位老师的视频对这个概念讲解得非常清楚,再结合算法书和网络的博文,记录如下. 1 ...
- AVL树的单双旋转操作
把必须重新平衡的节点称为å.对于二叉树,å的两棵子树的高度最多相差2,这种不平衡可能有四种情况: 对å的左儿子的左子树进行插入节点(左-左) 对å的左儿子的右子树进行插入节点(左-右) 对å的右儿子的 ...
- 创建AVL树,插入,删除,输出Kth Min
https://github.com/TouwaErioH/subjects/tree/master/C%2B%2B/PA2 没有考虑重复键,可以在结构体内加一个int times. 没有考虑删除不存 ...
- 第七章 二叉搜索树 (d2)AVL树:插入
- AVL树(平衡二叉查找树)
首先要说AVL树,我们就必须先说二叉查找树,先介绍二叉查找树的一些特性,然后我们再来说平衡树的一些特性,结合这些特性,然后来介绍AVL树. 一.二叉查找树 1.二叉树查找树的相关特征定义 二叉树查找树 ...
- 红黑树(RB-tree)比AVL树的优势在哪?
1. 如果插入一个node引起了树的不平衡,AVL和RB-Tree都是最多只需要2次旋转操作,即两者都是O(1):但是在删除node引起树的不平衡时,最坏情况下,AVL需要维护从被删node到root ...
随机推荐
- andriod first app-computer
andriod first app-computer 个人信息:就读于燕大本科软件project专业 眼下大三; 本人博客:google搜索"cqs_2012"就可以; 个人爱好: ...
- 解读Java中BigDecimal.ZERO.compareTo()的返回值含义
Java compareTo() 用法 例如: public static void main(String[] args) { BigDecimal bnum1, bnum2; bnum1 ...
- 数据库中substring的用法 CONVERT(varchar(12) , getdate(), 112 )
Sqlserver中常常要操作一些时间类型的字段转换,我又不太记得住,所以搜集了下面的一些SqlserverConvertDateTime相关的资料发表在自己的小站里,方便自己以后要用的时候寻找,望对 ...
- HDU 3791 二叉搜索树 (数据结构与算法实验题 10.2 小明) BST
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3791 中文题不说题意. 建立完二叉搜索树后进行前序遍历或者后序遍历判断是否一样就可以了. 跟这次的作业第 ...
- Android Notification如何显示表情?
遇到这种分析用什么实现的,肯定要祭出大杀器Android Device Monitor(AS在Tools->Android)打开之后,选中连接的设备,然后点击小手机图标,即可导出UI层次图.咱们 ...
- PhpStorm常用快捷键(不多够用)
PhpStorm常用快捷键(不多够用) 一.总结 一句话总结: 1.前进 解答:Ctrl+shift+ z 2.跳转到指定行数 解答:Ctrl+G 3.块注释 解答:ctrl + shift + / ...
- Opencv Surf算子中keyPoints,描述子Mat矩阵,配对向量DMatch里都包含了哪些好玩的东东?
Surf算法是一把牛刀,我们可以很轻易的从网上或各种Opencv教程里找到Surf的用例,把例程中的代码或贴或敲过来,满心期待的按下F5,当屏幕终于被满屏花花绿绿的小圆点或者N多道连接线条霸占时,内心 ...
- LaunchImage启动黑屏-模拟器可以,但是真机黑屏
名称和尺寸都是对的,就是不显示.结果美工重新做一张图片就行了,想了半天都没想到是图片本身等问题啊
- XMPP之ios即时通讯客户端开发-配置XMPP基本信息(四)
前文已经有配置open fire,接下来要通过XMPP框架链接到open fire的服务器: 1.首先要在系统偏好设置里面打开open fire的服务器 2.代码中设置xmpp的myJID 有几个名词 ...
- HDU 1244 Max Sum Plus Plus Plus - dp
传送门 题目大意: 给一个序列,要求将序列分成m段,从左至右每一段分别长l1,l2,...lm,求最大的和是多少. 题目分析: 和最大m段子段和相似,先枚举\(i \in [1,m]\),然后$j \ ...