题目分析

来自2013年王迪的论文《浅谈容斥原理》

设\(f_{n,S}\)表示n个节点,入度为0的点集恰好为S的方案数。

设\(g_{n,S}\)表示n个节点,入度为0的点集至少为S的方案数。

对于\(g_{n,S}\),有递推式
\[
g_{n,S}=2^{|S|(n-|S|)}g_{n-|S|,\emptyset}
\]

f与g有如下关系
\[
g_{n,S}=\sum_{S\subseteq T}f_{n,T}
\]

子集反演一下
\[
f_{n,S}=\sum_{S\subseteq T}(-1)^{|T|-|S|}g_{n,T}
\]

我们要求的答案即为
\[
\begin{split}
g_{n,\emptyset}&=\sum_{|S|=1}^nf_{n,S}\\
&=\sum_{|S|=1}^n\sum_{S\subseteq T}(-1)^{|T|-|S|}g_{n,T}\\
&=\sum_{|S|=1}^n\sum_{S\subseteq T}(-1)^{|T|-|S|}2^{|T|(n-|T|)}g_{n-|T|,\emptyset}\\
&=\sum_{i=1}^n\binom{n}{i}\sum_{j=i}^n\binom{n-i}{j-i}(-1)^{j-i}2^{j(n-j)}g_{n-j,\emptyset}\\
&=\sum_{j=1}^n2^{j(n-j)}g_{n-j,\emptyset}\sum_{i=1}^j\binom{n}{i}\binom{n-j}{j-i}(-1)^{j-i}\\
&=\sum_{j=1}^n(-1)^j\binom{n}{j}2^{j(n-j)}g_{n-j,\emptyset}\sum_{i=1}^j\binom{j}{i}(-1)^i\\
&=\sum_{j=1}^n(-1)^j\binom{n}{j}2^{j(n-j)}g_{n-j,\emptyset}(\left[j=0\right]-1)\\
&=\sum_{j=1}^n(-1)^{j+1}\binom{n}{j}2^{j(n-j)}g_{n-j,\emptyset}\\
&=n!\sum_{j=1}^n2^{j(n-j)}\frac{(-1)^{j+1}}{j!}\frac{g_{n-j,\emptyset}}{(n-j)!}
\end{split}
\]

很像一个卷积的形式了,但是怎么搞\(2^{j(n-j)}\)呢?

一个套路
\[
\begin{split}
2^{k(n-k)}&=\sqrt{2}^{2kn-2k^2}\\
&=\sqrt{2}^{-n^2+2kn-k^2-k^2+n^2}\\
&=\sqrt{2}^{n^2-k^2-(n-k)^2}\\
&=\frac{\sqrt{2}^{n^2}}{\sqrt{2}^{k^2}\sqrt{2}^{(n-k)^2}}
\end{split}
\]

这样就构造出了卷积形式。

所以
\[
\begin{split}
\frac{g_{n,\emptyset}}{n!\sqrt{2}^{n^2}}&=\sum_{j=1}^n\frac{(-1)^{j+1}}{j!\sqrt{2}^{j^2}}\frac{g_{n-j,\emptyset}}{(n-j)!\sqrt{2}^{(n-j)^2}}
\end{split}
\]

构造生成函数
\[
F(x)=\sum_{i=1}\frac{g_{i,\emptyset}}{i!\sqrt{2}^{i^2}}x^i\\
G(x)=\sum_{i=1}\frac{(-1)^{i+1}}{i!\sqrt{2}^{i^2}}
\]


\[
\begin{split}
F&=F*G+1\\
&={1\over1-G}
\end{split}
\]

多项式求逆即可。

cogs 2355. [HZOI 2015] 有标号的DAG计数 II的更多相关文章

  1. COGS 2396 2397 [HZOI 2015]有标号的强连通图计数

    题意:求n个点有向图其中SCC是一个的方案数 考虑求出若干个不连通的每个连通块都是SCC方案数然后再怎么做一做.(但是这里不能用Ln,因为推不出来) 设$f_n$为答案, $g_n$为n个点的有向图, ...

  2. COGS 2353 2355 2356 2358 有标号的DAG计数

    不用连通 枚举入度为0的一层 卷积 发现有式子: 由$n^2-i^2-(n-i)^2=2*i*(n-i)$ 可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt ...

  3. COGS2355 【HZOI2015】 有标号的DAG计数 II

    题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...

  4. cogs [HZOI 2015]有标号的二分图计数

    题目分析 n个点的二分染色图计数 很显然的一个式子 \[ \sum_{i=0}^n\binom{n}{i}2^{i(n-i)} \] 很容易把\(2^{i(n-i)}\)拆成卷积形式,前面讲过,不再赘 ...

  5. 有标号的DAG计数 II

    Description 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 Solution 考虑 \(O(n^2)\) DP 枚举出度为 \( ...

  6. 【题解】有标号的DAG计数2

    [HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...

  7. 【题解】有标号的DAG计数4

    [HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...

  8. 【题解】有标号的DAG计数3

    [HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...

  9. 【题解】有标号的DAG计数1

    [HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...

随机推荐

  1. 转:详解PV、UV、VV、IP及其关系与计算

    一.什么是PV? PV即Page View,网站浏览量,指页面浏览的次数,用以衡量网站用户访问的网页数量.用户每次打开一个页面便记录1次PV,多次打开同一页面则浏览量累计.一般来说,PV与来访者的数量 ...

  2. nvm安装最新稳定版node

    安装当前最新的稳定版. nvm install stable

  3. thinkphp htmlspecialchars_decode

    一  百度编辑器 与 htmlspecialchars_decode *Thinkphp百度编辑器 存的时候为了安全把进行了字符转换,数据库: <p>&nbsp;测试测试</ ...

  4. firefox并不支持selectSingleNode和selectNodes的解决方法

    转自:http://qsrock.iteye.com/blog/209585 function test(){ var perid = document.thisForm.PerID.value; v ...

  5. 十三、栅栏CyclicBarrier

    一.简介 栅栏CyclicBarrier的作用就是等待一组线程都准备好了,然后执行某个任务.这与CountDownLatch很相似. 但是CyclicBarrier和CountDownLatch是有区 ...

  6. CenOs7安装oracle图文详细过程(01)

    原创作品,转载请在文章头部(显眼位置)注明出处:https://www.cnblogs.com/sunshine5683/p/10011441.html 1.检查必要的安装包是否安装 命令脚本: rp ...

  7. BestCoder Round #93

    这么快两天就过去了啊……昨天是April Fool’s Day,但绝对是我过的所有April Fool’s Day里最没意思的一个…… 估计再不写就要忘了……还是写写吧= = 说好7:00到机房,然而 ...

  8. BZOJ4602: [Sdoi2016]齿轮(并查集 启发式合并)

    题意 题目链接 Sol 和cc的一道题很像啊 对于初始的\(N\)个点,每加一条限制实际上就是合并了两个联通块. 那么我们预处理出\(val[i]\)表示的是\(i\)节点所在的联通块根节点转了\(1 ...

  9. drupal读取mysql的longblob字段

    unserialize($event->variables)

  10. Navicat 连接 Oracle数据库并,导入数据泵(.dmp)

    如有什么质疑的地方,希望可以和大家一起探讨,共同进步. 一.安装方法: 1.首先下载Navicat Premium和Oracle Database Oracle Database官网下载地址:http ...