POJ 3710:Matrix Power Series
Description
给出矩阵 \(n*n\) 的 矩阵\(A\) , 求 \(A^1+A^2+A^3...+A^k\)
Solution
首先我们设 \(S_n=\sum_{i=1}^{n}A^i\)
容易得到结论 : \(S_{a+b}=S_{a}*A_{b}+S_{b}\)
于是我们可以把 \(k\) 二进制分解 , 拆成每一个 \(S_{2^i}\) 的形式再按上面的结论合并就行了.
\(S_{2^i}\) 也可以用上述结论倍增求出.
注意这样会多算一个单位矩阵 , 最后减去就行了.
#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
const int N=35;
int n,k,mod;
struct data{int a[35][35];}A,S,ret;
inline data operator *(const data &p,const data &q){
data ret;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
ret.a[i][j]=0;
for(int k=0;k<n;k++)
ret.a[i][j]=(ret.a[i][j]+p.a[i][k]*q.a[k][j])%mod;
}
return ret;
}
inline data operator +(const data &p,const data &q){
data ret;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
ret.a[i][j]=(p.a[i][j]+q.a[i][j])%mod;
return ret;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>k>>mod;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)scanf("%d",&A.a[i][j]);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)S.a[i][j]=ret.a[i][j]=(i==j);
while(k){
if(k&1)ret=ret*A+S;
S=S*A+S,A=A*A,k>>=1;
}
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)if(i==j)ret.a[i][j]=(ret.a[i][j]-1+mod)%mod;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++)printf("%d ",ret.a[i][j]);
puts("");
}
return 0;
}
POJ 3710:Matrix Power Series的更多相关文章
- 矩阵十点【两】 poj 1575 Tr A poj 3233 Matrix Power Series
poj 1575 Tr A 主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的 ...
- POJ 3233 Matrix Power Series (矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 11954 Accepted: ...
- POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】
任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K To ...
- [ACM] POJ 3233 Matrix Power Series (求矩阵A+A^2+A^3...+A^k,二分求和或者矩阵转化)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 15417 Accepted: ...
- Poj 3233 Matrix Power Series(矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...
- 线性代数(矩阵乘法):POJ 3233 Matrix Power Series
Matrix Power Series Description Given a n × n matrix A and a positive integer k, find the sum S = ...
- POJ 3233 Matrix Power Series(二分等比求和)
Matrix Power Series [题目链接]Matrix Power Series [题目类型]二分等比求和 &题解: 这题我原来用vector写的,总是超时,不知道为什么,之后就改用 ...
- POJ 3233 Matrix Power Series(矩阵快速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 19338 Accepted: 8161 ...
- poj 3233 Matrix Power Series(矩阵二分,高速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 15739 Accepted: ...
随机推荐
- Centos 安装 erlang 环境
系统 Centos 6.5 64位 Erlang 18.3.4 安装依赖组件 yum install -y gcc gcc-g++ unixODBC unixODBC-devel wxBase wxG ...
- textarea 高度自动
<textarea id="suggest" type="text" name="suggest" class="form- ...
- 学习迭代器实现C#异步编程——仿async/await(一)
.NET 4.5的async/await真是个神奇的东西,巧妙异常以致我不禁对其实现充满好奇,但一直难以窥探其门径.不意间读了此篇强文<Asynchronous Programming in C ...
- zstack相关学习的博客
https://segmentfault.com/u/camile/articles?page=1
- WIN7 64位配置X86 MySQL 数据源
在运行中输入“c:\windows\syswow64\odbcad32.exe”,在调出来的ODBC管理器中配置数据源.
- JAVA日期——java.util.date类的操作
package com.hxzy.time; import java.text.SimpleDateFormat;import java.util.Date; public class DateDem ...
- 洛谷P5292 [HNOI2019]校园旅行(二分图+最短路)
题面 传送门 题解 如果暴力的话,我们可以把所有的二元组全都扔进一个队列里,然后每次往两边更新同色点,这样的话复杂度是\(O(m^2)\) 怎么优化呢? 对于一个同色联通块,如果它是一个二分图,我们只 ...
- P5282 【模板】快速阶乘算法(多项式运算+拉格朗日插值+倍增)
题面 传送门 前置芝士 优化后的\(MTT\)(四次\(FFT\)) 题解 这里有多点求值的做法然而被\(shadowice\)巨巨吊起来打了一顿,所以来学一下倍增 成功同时拿到本题最优解和最劣解-- ...
- Unable to access 'default.path.data' (/var/lib/elasticsearch)
- [Swift]数学库函数math.h | math.h -- mathematical library function
常用数学函数 1. 三角函数 double sin (double);//正弦 double cos (double);//余弦 double tan (double);//正切 2 .反三角函数 d ...