ICPC (Isles of Coral Park City) consist of several beautiful islands. The citizens requested construction of bridges between islands to resolve inconveniences of using boats between islands, and they demand that all the islands should be reachable from any other islands via one or more bridges. The city mayor selected a number of pairs of islands, and ordered a building company to estimate the costs to build bridges between the pairs. With this estimate, the mayor has to decide the set of bridges to build, minimizing the total construction cost. However, it is difficult for him to select the most cost-efficient set of bridges among those connecting all the islands. For example, three sets of bridges connect all the islands for the Sample Input 1. The bridges in each set are expressed by bold edges in Figure F.1.
Figure F.1. Three sets of bridges connecting all the islands for Sample Input 1
As the first step, he decided to build only those bridges which are contained in all the sets of bridges to connect all the islands and minimize the cost. We refer to such bridges as no alternative bridges. In Figure F.2, no alternative bridges are drawn as thick edges for the Sample Input 1, 2 and 3.
Figure F.2. No alternative bridges for Sample Input 1, 2 and 3
Write a program that advises the mayor which bridges are no alternative bridges for the given input.
Input
The input file contains several test cases, each of them has the following format.
N M S1 D1 C1 . . . SM DM CM
The first line contains two positive integers N and M. N represents the number of islands and each island is identified by an integer 1 through N. M represents the number of the pairs of islands between which a bridge may be built. Each line of the next M lines contains three integers Si, Di and Ci (1 ≤ i ≤ M) which represent that it will cost Ci to build the bridge between islands Si and Di. You may assume 3 ≤ N ≤ 500, N − 1 ≤ M ≤ min(50000,N(N − 1)/2), 1 ≤ Si < Di ≤ N, and 1 ≤ Ci ≤ 10000. No two bridges connect the same pair of two islands, that is, if i ̸= j and Si = Sj, then Di ̸= Dj. If all the candidate bridges are built, all the islands are reachable from any other islands via one or more bridges.
Output
For each test case, output two integers, which mean the number of no alternative bridges and the sum of their construction cost, separated by a space.
Sample Input
4 4 1 2 3 1 3 3 2 3 3 2 4 3 4 4 1 2 3 1 3 5 2 3 3 2 4 3 4 4 1 2 3 1 3 1 2 3 3 2 4 3 3 3 1 2 1 2 3 1 1 3 1
Sample Output
1 3 3 9 2 4 0 0

分析:

题意
给定一个N个点,M条边的简单连通无向图。
对于一个无向图来说,它的最小生成树可能不是唯一的。
问在它的所有的最小生成树中共有的边是哪几条,输出边数和权值之和。
3<=N<=500, N-1<=M<=min{50000, N(N-1)/2}
思路
首先跑一遍Kruskal,得到最小生成树的权值。
之后尝试删去图中的边,如果某一条边被删去后,最小生成树的值发生了变化(一定变大),那么说明这条边是在所有的最小生成树中都不可或缺的,那么就把这条边加入到答案中。
注意到第一次Kruskal得到的边已经包含了所有的答案,因此只要枚举这里的N-1条边即可。
边排序的复杂度被均摊了,并查集的复杂度可以忽略,因此总的复杂度是O(NM)

注意:重载运算符比cmp快一点

还有就是用一个数组存下第一次MST用到的边(开始没有存起来,直接标记,超时。。。。。。。。。)

code:

#include <iostream>
#include <cstdio>
#include<stdio.h>
#include<algorithm>
#include<cstring>
#include<math.h>
#include<memory>
using namespace std;
typedef long long LL;
#define INF 0x3f3f3f3f
#define max_v 50010
#define max_n 510
struct edge
{
int x,y,w;
bool operator<(const edge& b) const
{
return w<b.w;
}
} e[max_v];
int possEdge[max_n];//保存第一次MST用到的边 很重要
int pa[max_n];
int cnt,minv;
int n,m;
int c,wsum;
void init()
{
for(int i=;i<=n;i++)
pa[i]=i;
}
int find_set(int x)
{
if(x!=pa[x])
pa[x]=find_set(pa[x]);
return pa[x];
}
int union_set(int x,int y)
{
x=find_set(x);
y=find_set(y);
if(x==y)
return ;
pa[x]=y;
return ;
}
void firstkrus()
{
cnt=;
minv=;
init();
for(int i=; i<m; i++)
{
if(union_set(e[i].x,e[i].y))
{
minv+=e[i].w;
possEdge[cnt++]=i;
if(cnt==n-)
break;
}
}
}
bool krusWithout(int ce)
{
init();
int sum=,ct=;
for(int i=; i<m; i++)
{
if(i==ce)
continue;
if(union_set(e[i].x,e[i].y))
{
ct++;
sum+=e[i].w;
if(sum>minv)
return false;
if(ct==cnt)
return true;
}
}
return false;
}
void trycut()
{
c=;
wsum=;
for(int i=; i<cnt; i++)
{
if(!krusWithout(possEdge[i]))
{
c++;
wsum+=e[possEdge[i]].w;
}
}
printf("%d %d\n",c,wsum);
}
int main()
{
while(~scanf("%d %d",&n,&m))
{
for(int i=; i<m; i++)
scanf("%d %d %d",&e[i].x,&e[i].y,&e[i].w);
sort(e,e+m);
firstkrus();
trycut();
}
return ;
}

UVALive - 6837 Kruskal+一点性质(暴力枚举)的更多相关文章

  1. Gym 101194L / UVALive 7908 - World Cup - [三进制状压暴力枚举][2016 EC-Final Problem L]

    题目链接: http://codeforces.com/gym/101194/attachments https://icpcarchive.ecs.baylor.edu/index.php?opti ...

  2. P1217 [USACO1.5]回文质数 Prime Palindromes(技巧+暴力枚举+线性筛)

    技巧:就是偶数位的回文数字一定不是质数---------证明:奇数位之和sum1==偶数位之和sum2的数字可以被11整除.(11除外,这是一个坑点) 最高位,最低位必须是 1, 3, 7, 9 暴力 ...

  3. UVA.12716 GCD XOR (暴力枚举 数论GCD)

    UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...

  4. Codeforces Round #266 (Div. 2)B(暴力枚举)

    很简单的暴力枚举,却卡了我那么长时间,可见我的基本功不够扎实. 两个数相乘等于一个数6*n,那么我枚举其中一个乘数就行了,而且枚举到sqrt(6*n)就行了,这个是暴力法解题中很常用的性质. 这道题找 ...

  5. CodeForces 742B Arpa’s obvious problem and Mehrdad’s terrible solution (暴力枚举)

    题意:求定 n 个数,求有多少对数满足,ai^bi = x. 析:暴力枚举就行,n的复杂度. 代码如下: #pragma comment(linker, "/STACK:1024000000 ...

  6. 2014牡丹江网络赛ZOJPretty Poem(暴力枚举)

    /* 将给定的一个字符串分解成ABABA 或者 ABABCAB的形式! 思路:暴力枚举A, B, C串! */ 1 #include<iostream> #include<cstri ...

  7. HNU 12886 Cracking the Safe(暴力枚举)

    题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=12886&courseid=274 解题报告:输入4个数 ...

  8. 51nod 1116 K进制下的大数 (暴力枚举)

    题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; ; ; ch ...

  9. Codeforces Round #349 (Div. 1) B. World Tour 最短路+暴力枚举

    题目链接: http://www.codeforces.com/contest/666/problem/B 题意: 给你n个城市,m条单向边,求通过最短路径访问四个不同的点能获得的最大距离,答案输出一 ...

随机推荐

  1. K:括号分隔符匹配问题

    相关介绍:  括号分隔符匹配问题是指,判断所输入的字符串表达式中的括号是否匹配的问题,例如1+(12+2)*(1+2)便是一个括号分隔符匹配的表达式,而(12+1)*4+(12/2]就是一个括号分隔符 ...

  2. 基于netcore对ElasitSearch客户端NEST查询功能的简单封装NEST.Repository

    NEST.Repository A simple encapsulation with NEST client for search data form elasticsearch. github A ...

  3. PGIS大数据量点位显示方案

    PGIS大数据量点位显示方案 问题描述 PGIS在地图上显示点位信息时,随点位数量的增加浏览器响应速度会逐渐变慢,当同时显示上千个点时浏览器会变得非常缓慢,以下是进行的测试: 测试环境: 服务器: C ...

  4. String和StringBuffer有什么区别

    首先,String和StringBuffer主要有2个区别: (1)String类对象为不可变对象,一旦你修改了String对象的值,隐性重新创建了一个新的对象,释放原String对象,StringB ...

  5. 控制HTML页面内容不能选中的方法

    方法有二 一: css 方法 user-seletct: none;-webkit-user-seletct: none;-moz-user-seletct: none;-ms-user-seletc ...

  6. mysql那些招

    show table status mysql官方文档在 http://dev.mysql.com/doc/refman/5.1/en/show-table-status.html 这里的rows行是 ...

  7. Effective C++(4) 确定对象被使用前已先被初始化

    危害:读取未初始化的值会导致不明确甚至是半随机化的行为. 最佳处理办法:永远在使用对象之前先将它初始化:确保每一个构造函数都将对象的每一个成员初始化. 1 注意区分赋值和初始化: 从初始化的角度而言, ...

  8. 解决网卡无法自动获取ip的办法

    解决网卡无法自动获取IP址的方法          为了省钱或者一户多机,很多人都购买宽带路由器共享上网.在架设路由上网的时候,有些“师傅”可能不懂或是偷懒,开启了宽带路由器的DHCP( Dynami ...

  9. 最优化作业 共轭梯度法 matlab代码

    syms f x1 x2 f=(1/2)*x1^2+x2^2; x=[2;1]; a=[1 0;0 2];% A g1=diff(f,x1); g2=diff(f,x2); g=[g1;g2];%导数 ...

  10. Windows 下的内存泄漏检测方法

    在 Windows 下,可使用 Visual C++ 的 C Runtime Library(CRT) 检测内存泄漏. 首先,我们在.c或.cpp 文件首行插入这一段代码: #define _CRTD ...