【网络通信】TCP三次握手和四次挥手的示意图
三次握手
TCP连接是通过三次握手来连接的。
第一次握手
当客户端向服务器发起连接请求时,客户端会发送同步序列标号SYN
到服务器,在这里我们设SYN
为m,等待服务器确认,这时客户端的状态为SYN
_SENT。
第二次握手
当服务器收到客户端发送的SYN
后,服务器要做的是确认客户端发送过来的SYN
,在这里服务器发送确认包ACK
,这里的ACK
为m+1,意思是说“我收到了你发送的SYN
了”,同时,服务器也会向客户端发送一个SYN
包,这里我们设SYN
为n。这时服务器的状态为SYN
_RECV。
一句话,服务器端发送SYN
和ACK
两个包。
第三次握手
客户端收到服务器发送的SYN
和ACK
包后,需向服务器发送确认包ACK
,“我也收到你发送的SYN
了,我这就给你发个确认过去,然后我们即能合体了”,这里的ACK
为n+1,发送完毕后,客户端和服务器的状态为ESTABLISH,即TCP连接成功。
在三次握手中,客户端和服务器端都发送两个包SYN
和ACK
,只不过服务器端的两个包是一次性发过来的,客户端的两个包是分两次发送的。
三次握手示意图如下(纯手绘,见谅见谅):
四次挥手
当A端和B端要断开连接时,需要四次握手,这里称为四次挥手。
断开连接请求可以由客户端发出,也可以由服务器端发出,在这里我们称A端向B端请求断开连接。
第一次挥手
A端向B端请求断开连接时会向B端发送一个带有FIN
标记的报文段,这里的FIN
是FIN
ish的意思。
第二次挥手
B端收到A发送的FIN
后,B段现在可能现在还有数据没有传完,所以B端并不会马上向A端发送FIN
,而是先发送一个确认序号ACK
,意思是说“你发的断开连接请求我收到了,但是我现在还有数据没有发完,请稍等一下呗”。
第三次挥手
当B端的事情忙完了,那么此时B端就可以断开连接了,此时B端向A端发送FIN
序号,意思是这次可以断开连接了。
第四次挥手
A端收到B端发送的FIN
后,会向B端发送确认ACK
,然后经过两个MSL时长后断开连接。
MSL是Maximum Segment Lifetime,最大报文段生存时间,2个MSL是报文段发送和接收的最长时间。
四次挥手示意图如下(纯手绘,见谅见谅):
两次握手可以么?
TCP连接时是三次握手,那么两次握手可行吗?
在《计算机网络》中是这样解释的:已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某 个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报 文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要 server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送ACK
包。这样就会白白浪费资源。
而经过三次握手,客户端和服务器都有应有答,这样可以确保TCP正确连接。
为什么TCP连接是三次,挥手确是四次?
在TCP连接中,服务器端的SYN
和ACK
向客户端发送是一次性发送的,而在断开连接的过程中,B端向A端发送的ACK
和FIN
是是分两次发送的。因为在B端接收到A端的FIN
后,B端可能还有数据要传输,所以先发送ACK
,等B端处理完自己的事情后就可以发送FIN
断开连接了。
为什么在第四次挥手后会有2个MSL的延时?
前文说到
MSL是Maximum Segment Lifetime,最大报文段生存时间,2个MSL是报文段发送和接收的最长时间。
假定网络不可靠,那么第四次发送的ACK
可能丢失,即B端无法收到这个ACK
,如果B端收不到这个确认ACK
,B端会定时向A端重复发送FIN
,直到B端收到A的确认ACK
。所以这个2MSL就是用来处理这个可能丢失的ACK
的。
【网络通信】TCP三次握手和四次挥手的示意图的更多相关文章
- 网络通信 --> TCP三次握手和四次挥手
TCP三次握手和四次挥手 建立TCP需要三次握手才能建立,而断开连接则需要四次握手.整个过程如下图所示: 一.TCP报文格式 如下图: (1)序号:Seq序号,占32位,用来标识从TCP源端向目的端发 ...
- 脑残式网络编程入门(一):跟着动画来学TCP三次握手和四次挥手
.引言 网络编程中TCP协议的三次握手和四次挥手的问题,在面试中是最为常见的知识点之一.很多读者都知道“三次”和“四次”,但是如果问深入一点,他们往往都无法作出准确回答. 本篇文章尝试使用动画图片的方 ...
- [转帖]脑残式网络编程入门(一):跟着动画来学TCP三次握手和四次挥手
脑残式网络编程入门(一):跟着动画来学TCP三次握手和四次挥手 http://www.52im.net/thread-1729-1-1.html 1.引言 网络编程中TCP协议的三次握手和 ...
- TCP三次握手及四次挥手详细图解
TCP三次握手及四次挥手详细图解 Andrew Huangbluedrum@163.com 相对于SOCKET开发者,TCP创建过程和链接折除过程是由TCP/IP协议栈自动创建的.因此开发者并不 ...
- 用wireshark抓包分析TCP三次握手、四次挥手以及TCP实现可靠传输的机制
关于TCP三次握手和四次挥手大家都在<计算机网络>课程里学过,还记得当时高超老师耐心地讲解.大学里我遇到的最好的老师大概就是这位了,虽然他只给我讲过<java程序设计>和< ...
- 应聘复习基础笔记1:网络编程之TCP与UDP的优缺点,TCP三次握手、四次挥手、传输窗口控制、存在问题
重要性:必考 一.TCP与UDP的优缺点 ①TCP---传输控制协议,提供的是面向连接.可靠的字节流服务.当客户和服务器彼此交换数据前,必须先在双方之间建立一个TCP连接,之后才能传输数据.TCP提供 ...
- 【HTTP协议】---TCP三次握手和四次挥手
TCP三次握手和四次挥手 首先我们知道HTTP协议通常承载于TCP协议之上,HTTPS承载于TLS或SSL协议层之上 通过上面这张图我们能够知道. 在Http工作之前,Web浏览器通过网络和W ...
- TCP‘三次握手’和‘四次挥手’(通俗易懂)
概述 我们都知道 TCP 是 可靠的数据传输协议,UDP是不可靠传输,那么TCP它是怎么保证可靠传输的呢?那我们就不得不提 TCP 的三次握手和四次挥手. 三次握手 下图为三次握手的流程图 下面通 ...
- 【转】TCP三次握手和四次挥手全过程及为什么要三次握手解答
TCP三次握手和四次挥手的全过程 TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接: 位码即tcp标志位,有6种表示: SYN(synchronous建立连接) ...
随机推荐
- echarts页面中多图自适应
$(function (){ //ups部分 var myChart = echarts.init(document.getElementById('result')) var option = { ...
- 从Linux服务器下载文件到本地命令
从Linux服务器下载文件夹到本地1.使用scp命令 scp /home/work/source.txt work@192.168.0.10:/home/work/ #把本地的source.txt文件 ...
- 按月、按日进行数据统计的Mysql语句
<select id="getCustomerTJByUser" parameterType="map" resultType="map&quo ...
- AVAudioFoundation(5):音视频导出
本文转自:AVAudioFoundation(5):音视频导出 | www.samirchen.com 本文主要内容来自 AVFoundation Programming Guide. 要读写音视频数 ...
- 基于swing的MySQL可视化界面
个人记录贴... 代码过烂不宜参考.. 效果展示 1.选择需要打开的数据库,查看数据库下的表. 2.双击打开一个表 3.没有CRUD.... 代码 test-main: import shell.DB ...
- Access规格
属性 最大值 Microsoft Access 数据库 (.mdb) 文件大小 2G 字节减去系统对象所需的空间. 数据库中的对象个数 32,768 模块(包括“内含模块”属性为“是”的窗体和报表) ...
- Java8 Lambda
Demo: package com.qhong; public class Main { public static void main(String[] args) throws Exception ...
- 【问题解决:未找到端口号】启动报错Circular placeholder reference 'server.port' in property definitions
问题描述: 启动spring boot项目时报错:Circular placeholder reference 'server.port' in property definitions 解决过程: ...
- Flask 3 程序的基本结构2
NOTE 1.hello.py 通过修饰器的route方法添加动态路由: #!/usr/bin/env python from flask import Flask app = Flask(__nam ...
- SDN原理 控制层 Controller控制器
本文参照SDN原理视频而成:SDN原理 Controller 概念 从上面这个图片,我们能够知道,Controller 是一个非常重要的东西:承上启下,左右拓展. 从整个SDN的架构来看,控制器 处在 ...